Practice Question Set For GCSE

Subject : Physics

Paper-1 Topic : Waves

Name of the Student:		
Max. Marks: 18 Marks	S	Time: 18 Minutes

Q1.

Figure 16 is an energy diagram for a sound wave incident on a sound-insulating board.

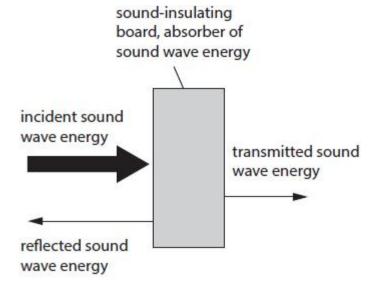


Figure 16

(i) The incident energy is 0.25 J.

The absorbed energy is 67% of the incident energy. The reflected energy is 15% of the incident energy. Calculate the amount of the transmitted energy.

(Total for question = 3 marks)

(2)

Figure 16 is an energy diagram for a sound wave incident on a sound-insulating board.

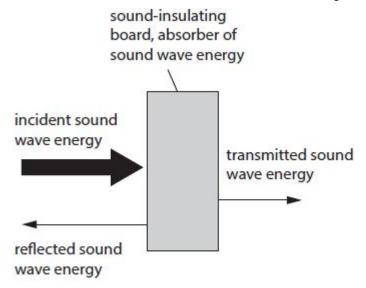


Figure 16

(i) The incident energy is 0.25 J.

The absorbed energy is 67% of the incident energy. The reflected energy is 15% of the incident energy. Calculate the amount of the transmitted energy.

(2)

transmitted energy =	J
(ii) Give one way to reduce the percentage of energy transmitted through the sound-insulating board.	
	(1)

(Total for question = 3 marks)

Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Figure 9 shows two technicians, L and M, measuring the speed of sound in air.



Figure 9

L fires a starting pistol.

M starts a stopwatch when first seeing the smoke from the starting pistol.

M stops the stopwatch when hearing the bang made by the starting pistol.

The distance between L and M is 120 m.

M's reaction time is 0.23 s.

The speed of sound in air is 330 m/s.

(i)	Calculat	late M's reaction time as a percentage of the time sound takes to travel from L to M.		
			(3)	
			%	
(ii)	Which o	of these would improve the technicians' measurement of the speed of sound?		
	A B C	Use a firework 'banger' instead of the starting pistol. Use a stop clock that measures time in minutes. Increase the distance between L and M. Decrease the distance between L and M.	(1)	

(Total for question = 4 marks)

A transducer can transmit and detect ultrasonic waves.

Figure 15 shows ultrasonic waves transmitted by the transducer on the bottom of a ship.

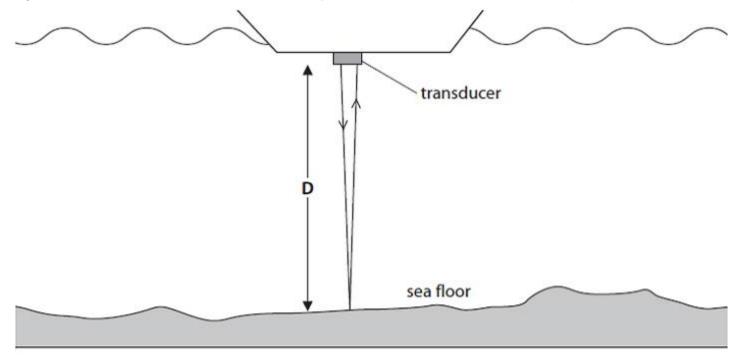


Figure 15

The waves reflect off the sea floor and are received back at the transducer.

The waves travel at 1500 m / s.

The time between transmission and reception is 48 milliseconds.

Calculate the depth of water, D, shown in Figure 15.

(2)

depth of water, D = m

(Total for question = 2 marks)

\sim	2
u	. 3.

4 3.	
The pulse returns to the bat after a time of 18 ms. Calculate the distance from the bat to its prey.	(4)
	distance = m
	(Total for question = 4 marks)

Figure 1 shows a bat and its prey.

not to scale

prey

Figure 1

The bat emits a high frequency sound pulse to locate its prey.

The speed of sound in air is 330 m / s.

The wavelength of the sound is 11 mm.

Calculate the frequency of the sound.

(2)

Use the equation

$$v = f \times \lambda$$

frequency = Hz

(Total for question = 2 marks)