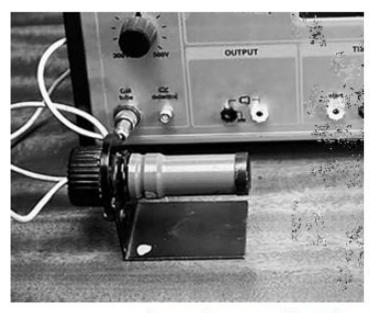
Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic : 6_Radioactivity



Name of the Student:

Max. Marks : 21 Marks Time : 21 Minutes

Q1.

Figure 17 shows a Geiger-Müller (GM) tube used for measuring radioactivity.

©Andrew Lambert Science Photo Library

Figure 17

A radioactivity count-rate is first made in air.

The count-rate is measured again with each of three different absorbers between the rock and the GM tube. Figure 19 shows the count-rates measured.

absorber	count-rate in counts per minute
3 cm of air	1272
thin sheet of paper	931
3 mm thick sheet of aluminium	328
2 cm thick sheet of lead	21

Figure 19

^{*} A radioactive rock is placed near to the front of a Geiger-Müller (GM) tube.

Explain how the data in this table supports the scientist's idea.	
	(6)

A scientist has an idea that the rock emits three different types of radiation.

(Total for question = 6 marks)

Figure 17 is a diagram of a nuclear reactor.

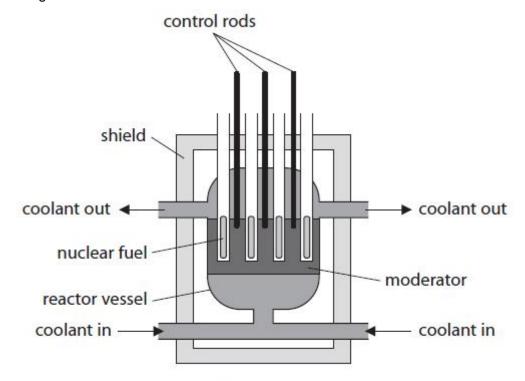


Figure 17

(i) Explain how pushing the control rods further into the reactor slows down the nuclear chain reaction.

	(2)
 (ii) The moderator in a nuclear reactor slows down the neutrons so that the neutrons are more likely to other fission reactions. In a nuclear reactor, • the average speed of the fast neutrons is 3.0 × 107 m/s 	start
• the average speed of the slow neutrons is 4.0 × 103 m/s	
Calculate the average speed of the slow neutrons as a percentage of the average speed of the fast neutrons.	
neutions.	(2)
	()
	%
(iii) The nuclear reaction is the first stage in the process of generating electricity.	
Describe how energy is transferred from the nuclear reaction to the next stage in the process.	(2)
	(-)

(Total for question = 6 marks)

An atom has a central nucleus containing neutrons and protons.

Electrons orbit the nucleus.

One isotope of carbon is carbon-14.

(i) State the number of protons in one atom of carbon-14.

number of protons =

(ii) State the number of neutrons in one atom of carbon-14.

(1)

(1)

number of neutrons =

(iii) Figure 6 shows a graph for the decay of the radioactive isotope carbon-14.

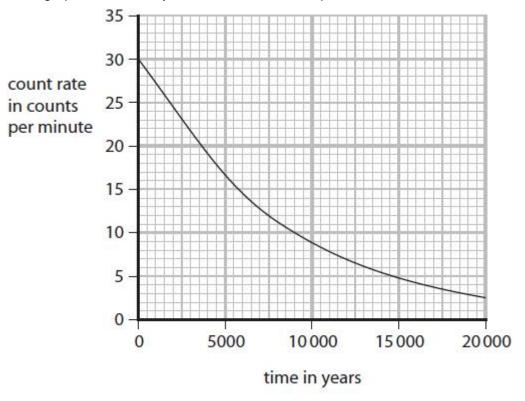


Figure 6

Use the graph to estimate the half-life of carbon-14.

(2) half-life = years

(Total for question = 4 marks)

Answer the question with a cross in the box you think is correct	☑. If you change your mind about an
answer, put a line through the box $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	answer with a cross 🗵.

An atom has a central nucleus containing neutrons and protons.

Electrons orbit the nucleus.

(i) Which row of the table gives the relative mass and charge of a proton?

relative mass charge

□ A 0 +1
□ B 0 -1
□ C 1 +1
□ D 1 -1

(ii) An atom has a radius of 1.0×10^{-10} m.

A nucleus has a radius of 1.0×10^{-15} m.

Calculate the ratio of the radius of the atom to the radius of the nucleus.

(2)

(1)

ratio of radius of atoms to radius of nucleus =	
(iii) Explain why an atom has no charge overall.	
	(2)

(Total for question = 5 marks)