Practice Question Set For GCSE

Subject : Physics

Paper-1 Topic: 3_Conservation Of Energy

Name of the Student:	
Max. Marks : 17 Marks	Time: 17 Minutes
Q1.	
(i) The aircraft lands with a velocity of 71 m/s.	
The mass of the aircraft is 3.6×105 kg.	
Calculate the kinetic energy of the aircraft as it lands.	
	(2)
kinetic energy of aircraft =	J
(ii) When the aircraft has come to a stop, all the kinetic energy has been transferred to the	e surroundings.
Give one way that the energy has been transferred to the surroundings.	
	(1)
(Total for	question = 3 marks)

In a science fiction story, lightning is used as an energy source for accelerating a car.

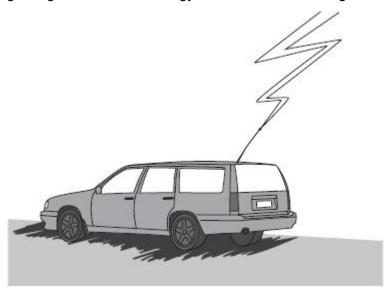


Figure 6

In the story, the car has a kinetic energy of 960 kJ at a speed of 40 m/s.

Calculate	the	mass	of	the	car.
	Calculate	Calculate the	Calculate the mass	Calculate the mass of	Calculate the mass of the

(4)

	mass =	kg
(ii)	Only 5% of the energy of the lightning bolt is transferred to the kinetic energy of the car.	
	Calculate the total energy of the lightning bolt in MJ.	

(2)

(Total for question = 6 marks)

A kettle is used to heat water.

Figure 11 shows a graph of temperature against time for the water in the kettle.

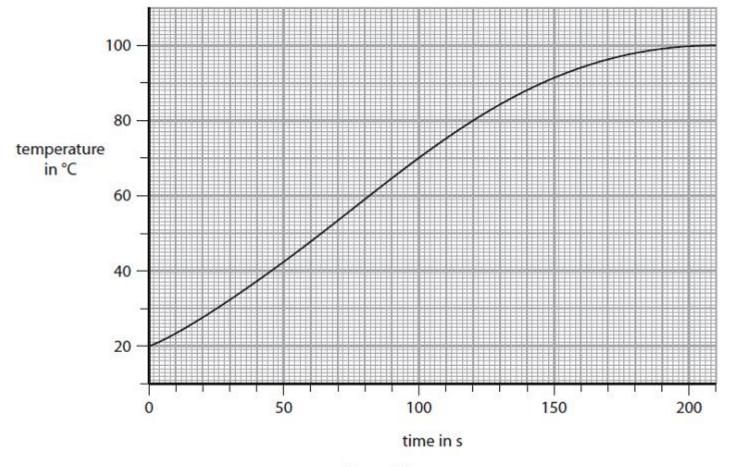


Figure 11

Calculate the rate of increase in temperature at a time of 150 s, by drawing a tangent to the curve in Figure 11 at a time of 150 s.

(3)

.....°C/s

(Total for question = 3 marks)

Figure 2 shows a person on a skateboard at the top of a ramp.

At P, the person is not moving.

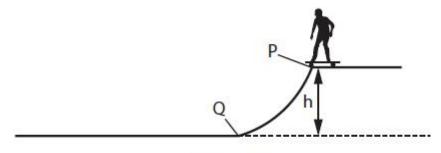


Figure 2

The kinetic energy, KE, of the person at Q is 950 J.

The mass of the person is 35 kg.

Calculate the velocity of the person at Q.

Use the equation

$$v^2 = \frac{2 \times KE}{m}$$

(3)

velocity = m/s

(Total for question = 3 marks)

Q5.

A kettle is used to heat water.

The kettle has an efficiency of 91% in supplying energy to the water. The thermal energy of the water increases by 3.3×10^5 J in 200 s.

Calculate the total amount of energy supplied to the kettle in the 200 s.

Use the equation

efficiency =
$$\frac{\text{(useful energy transferred by the device)}}{\text{(total energy supplied to the device)}}$$

(2)

(Total for question = 2 marks)