Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: 3_Conservation Of Energy

Name of the Student:	
Max. Marks : 18 Marks	Time : 18 Minutes
Q1.	
Figure 15 shows a foam jacket around a copper cylinder.	
foam jacket	
Figure 15	
The hot water is stored in the copper cylinder until it is needed.	
The foam jacket helps to keep the water hot.	
(i) Explain how the foam helps to keep the water hot.	
	(2)
* (ii) A company has developed a new material which they think could be used instead o cylinder.	 f foam around the
Devise an investigation they could carry out to make a fair comparison of the insulating p material with those of the foam.	roperties of their new
	(6)

(Total for question = 8 marks)

		the question with a cross in the box you think is correct \boxtimes . If you change your mind about put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .	an
Whi	ch or	ne of these is a renewable energy source?	
			(1)
	Α	coal	
	В	nuclear	
	С	oil	
	D	wind	
		(Total for question = 1 ma	-l-\
		(Total for question = 1 ma	in)

(i)	Whic	ch of these v	ould be a typical speed	d for a racing cyc	list travelling do	own a steep stra	ight slope? (1
	Α	0.2 m/s					
	В	2 m/s					
	С	20 m/s					
	D	200 m/s					
The The	e top e cycl	of the slope list has a ma	· ·		·		
		_	e in gravitational potent		cyclist between	the top and the	bottom of the slope
The	e grav	vitational fie	d strength, g, is 10 N/k	g.			10
							(3
			change in gra	avitational potent	ial energy =		juestion = 4 marks

Q3.

Figure 7 shows a skier going down a hill.

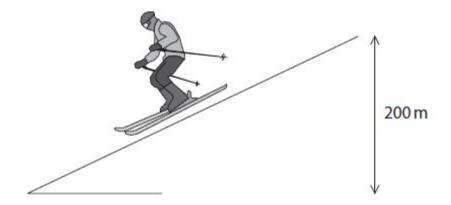


Figure 7

She descends through a vertical height of 200 m.

The skier's mass is 65 kg.

(i) Calculate the change in gravitational potential energy.

Use the equation

$$\triangle GPE = m \times g \times \Delta h$$

Take the gravitational field strength, g, as 10 N / kg.

(2)

(ii) At the bottom of the slope her speed was 36 m/s.

Calculate her kinetic energy at the bottom of the slope. Use the equation

$$KE = \frac{1}{2} \times m \times v^2$$

(3)

(Total for question = 5 marks)