Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic : 6_ Radioactivity

Name of the Student:	
Max. Marks : 19 Marks	Time : 19 Minutes
Q1.	
* Gamma radiation is produced by radioactive decay.	
Alpha radiation and beta radiation are also produced by radioactive decay.	
Compare the processes of alpha decay and beta decay.	
Your answer should include what each radiation is and what effect each decay has on the	original nucleus.
	(6)
(Total for	question = 6 marks)
(Total for	question = 0 marks)

Q2.

The teacher now investigates the absorption of beta radiation by different thicknesses of aluminium.

The apparatus available is

- a source of beta radiation
- a Geiger-Müller (G-M) tube and counter
- 10 pieces of aluminium, each 0.5 mm thick
- a metre rule.

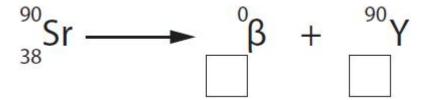
(i)	Sketch a labelled diagram s	showing the	positions of the apparatu	s when the measurements are b	eina taken
` '					- 3

(2)

((ii)) Give the	e indepei	ndent v	ariable	in this	investigation.
М	٠						

(1)

(iii)	Name a quantity	that must be	kent constant	during the	investigation
(''')	rianio a quantity	mat madt bo	Ropt constant	daring the	iiivootigatioii.


(1)

(iv) Strontium-90 is the source of beta minus radiation in this investigation.

Complete the nuclear equation for this emission of beta minus radiation.

(2)

(Total for question = 6 marks)

Q3.

Students are given the apparatus shown in Figure 8 and a protractor.

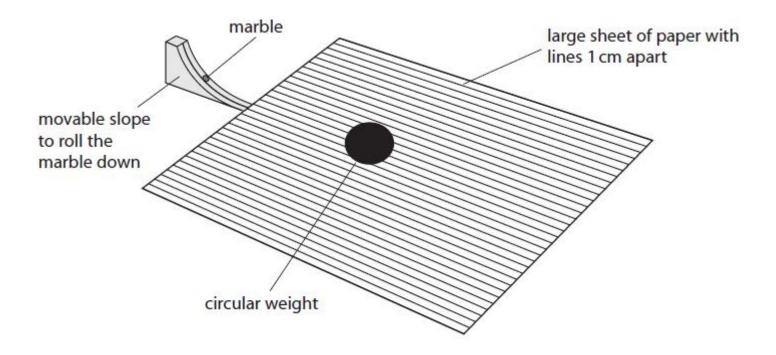


Figure 8

(i) Describe how the students could use the apparatus to model the scattering of alpha particles.	
	(2)
(ii) Give one limitation of this model.	
	(1)
(Total for question = 3	3 marks)

Q4.

Radium-223 is a radioactive substance.

Radium-223 is an alpha emitter.

The half-life of radium-223 is 11 days.

A radioactive source contains 1.7×10^{23} nuclei of radium-223.

Calculate the number of radium-223 nuclei remaining in the source after a time of 33 days.

(2)

number of radium-223 nuclei remaining =
(Total for question = 2 marks)
Q5.
Sometimes food can become contaminated with radioactive substances.
Describe the harmful effects of eating food contaminated with radioactive substances.
(2)
(Total for question = 2 marks)