Practice Question Set For GCSE

Subject : Physics

Paper-1 Topic : 2_Motion and Forces

Name of the Student:	_	
Max. Marks: 17 Marks	Time : 17 Minutes	
Q1.		
Answer the question with a cross in the box you think is correct . If you change answer, put a line through the box and then mark your new answer with a cross	•	
A car is travelling at 10 m/s.		
The driver sees a danger and stops the car.		
(i) The stopping distance for the car would be smaller if the car		
 A had more passengers B had worn tyres C needed new brakes D was travelling more slowly 	(1)	

Figure 4 shows a speed-time graph for the driver stopping the car.

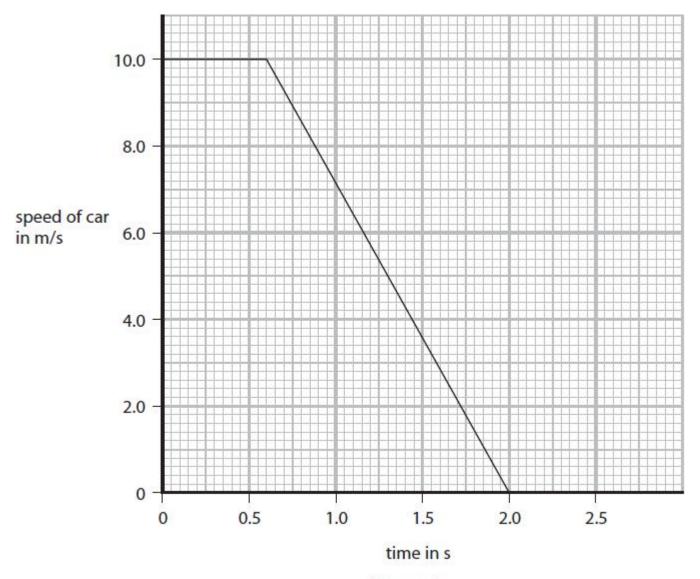


Figure 4

(ii) Use the graph to find the driver's reaction time.

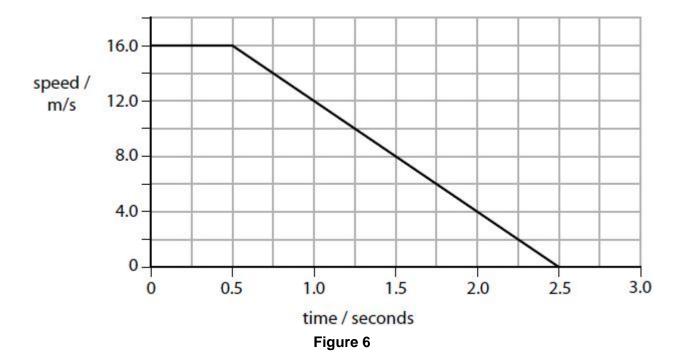
(2)

reaction time =s

(Total for question = 3 marks)

Q2.

Shot-put is an Olympic event. The shot is a heavy ball. An athlete throws the shot as far as possible.


A sports scientist analyses an athlete's throw to help improve performance.

The scientist can measure several quantities in the analysis.

Which	one of the following	ng is a scalar quantity?		(1)
A B C D	acceleration force mass velocity		(Tota l	l for question = 1 mark)
			(,
Q3.				
Figure	6 shows a set of	results used to find the a	average stopping distance of the toy ca	ar on a surface.
		test number	stopping distance in m	
		1	0.35	
		2	0.32	
		3	0.52	
		4	0.38	
		5	0.33	
	,	,	Figure 6	
(i) Stat	te the anomalous	value of stopping distan	ice given in the table in Figure 6.	
				(1)
(ii) Use	e the results in Fiç	gure 6 to calculate the av	verage stopping distance.	(2
				\
		avera	ge stopping distance =	m
(iii) Sta	ate one way the s	tudent could increase th	e speed of the car as it reaches the fla	it surface.

				(1)
			(Total for question =	4 marks)
Q4	١.			
			ne question with a cross in the box you think is correct $oxtimes$. If you change your mind a but a line through the box $oxtimes$ and then mark your new answer with a cross $oxtimes$.	about an
(i)	Wh	ich o	of these is the correct equation that relates force, mass and acceleration?	
		Α	F = m + a	(1)
		В	F = m - a $F = m \times a$	
	×	C D	$F = m \times a$ $F = m \div a$	
(ii)	A c	yclis	st has a mass of 70 kg.	
			ate the force needed to accelerate the cyclist at 2.0 m / s ² .	
	Sta	te the	ne unit.	(2)
			force =unit =	
			(Total for question =	3 marks)
Q5	5.			
(i)	Wh	ich o	of these would be a typical speed for a racing cyclist travelling down a steep straight slope?	(1)
	Α	0.:	0.2 m/s	(1)
Š	В	2	2 m/s	
	С	20	20 m/s	
	D	20	200 m/s	

(ii)) A cyclist travels down a slope.	
	The top of the slope is 20 m vertically above the bottom of the slope. The cyclist has a mass of 75 kg.	
	Calculate the change in gravitational potential energy of the cyclist between the top and the bo slope.	ttom of the
	The gravitational field strength, g, is 10 N/kg.	(0)
		(3)
	change in gravitational potential energy =	J
	(Total for questio	n = 4 marks)
Q6	6.	
	nswer the question with a cross in the box you think is correct $oxtimes$. If you change your minswer, put a line through the box $oxtimes$ and then mark your new answer with a cross $oxtimes$.	nd about an
Qι	uantities can be either scalar or vector.	
Wł	hich of these is a vector quantity?	
	A mass	(1)
	A mass B force	
	C energy	
	D distance	
	(Total for questi	on = 1 mark)
Q7	7.	
	car driver sees a rabbit on the road.	
	ne driver makes an emergency stop after he sees the rabbit.	
Fic	gure 6 shows the speed of the car from the time the driver sees the rabbit until the car stops	

The distance travelled by the car from the time the driver first sees the rabbit to when car starts to slow down is the

(1)

- A average distance
- B braking distance
- C stopping distance
- **D** thinking distance

(Total for question = 1 mark)