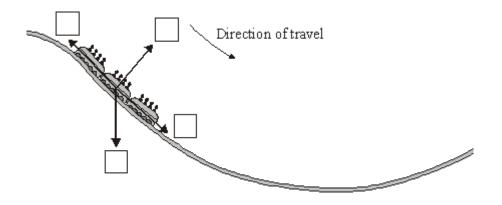
Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: GCSE Triple Science_Forces (Standard Demand Questions)

		Student: 19 Marks	Time : 19 Minutes
Q1. (a)	The	diagram shows a cable car used to take skiers to the top of a mountain.	
	(i)	The total mass of the cable car and skiers is 7500 kg. Calculate the weight of the cable car and skiers. gravitational field strength = 10 N/kg Show clearly how you work out your answer and give the unit.	
		Weight =	(3)
	(ii)	The cable car moves at a constant speed. It lifts skiers through a vertical metres in 7 minutes. Calculate the work done to lift the cable car and skiers. Show clearly how you work out your answer.	
		Work done =	J J

(b) The diagram shows a skier who is accelerating down a steep ski slope.



(i)	Draw an arrow on the diagram to show the direction of the resultant force act skier.	ing on the
(ii)	How and why does the kinetic energy of the skier change?	·
		-
		_ _ (2
coul	year, 18 000 skiers suffered a head injury. It is thought that nearly 8000 of the d have been avoided if the skier had been wearing a helmet. vever, at present, there are no laws to make skiers wear helmets.	-
Sug	gest why skiers should be made aware of the benefits of wearing a helmet.	
		_ _ (1
		(Total 9 marks
The	e diagram shows a car travelling at a speed of 12 m/s along a straight road.	
(i)	Calculate the momentum of the car.	
	Mass of the car = 900 kg Show clearly how you work out your answer.	

			_	
			_	
		Momentum =	kg m/s	(2
	(ii)	Momentum has direction.		
		Draw an arrow on the diagram to show the direction of the car's momentum.		(
o)	The car stops at a set of traffic lights.			
	Hov	w much momentum does the car have when it is stopped at the traffic lights?		
	Give	e a reason for your answer.	_	
			_	
			_	
			(Total 5 ma	(2 rks
'he	diagr	am shows the passenger train on part of a rollercoaster ride.		
	_	ich arrow shows the direction of the resultant force acting on the passenger train	n?	

Q3.

(a) Which arrow shows the direction of the resultant force acting on the passenger train?Put a tick (✓) in the box next to your choice.

(1)

(b) At the bottom of the slope, the passengers in the train all have the same speed but they each have a different kinetic energy.

Why is the kinetic energy of each passenger different?

(c)	For part of the ride, the maximum gravitational field strength acting on the passengers seems 3 times bigger than normal.				
	Nor	mal gravitational field strength = 9.8 N/kg			
	(i)	Calculate the maximum gravitational field strength that seems to act on the passengers during the ride.			
		Maximum gravitational field strength =	- - N/kg		
	(ii)	One of the passengers has a mass of 80 kg.		(1	
		Calculate the maximum weight this passenger seems to have during the ride. Show clearly how you work out your answer.			
		Maximum weight =	N		
			(Total 5 ma	2) irks	

(1)