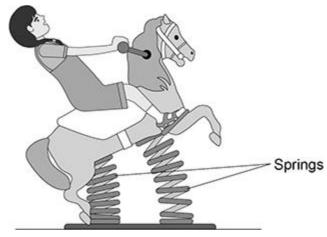
Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: GCSE Triple Science_Forces (Standard Demand Questions)


ପ୍ରିଲ	Merit Minds
00	www.merit-minds.com
Exam Prepara	tion and Free Resources

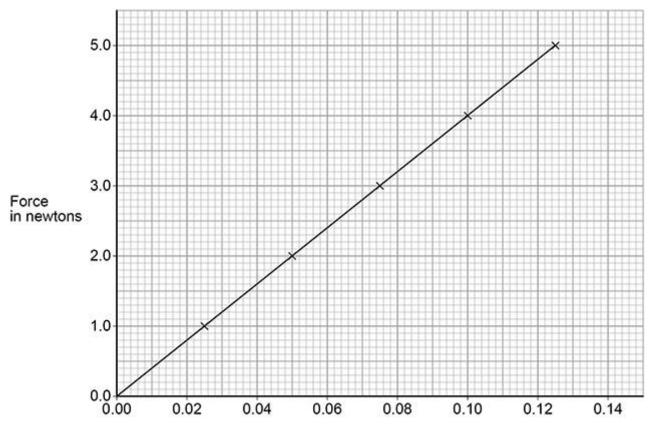
Name of the Student:	
Max. Marks : 17 Marks	Time : 17 Minutes

Q1.

Figure 1 below shows a child on a playground toy.

Figure 1

(a) The	springs	have	been	elastica	lly	defo	med.
----	-------	---------	------	------	----------	-----	------	------


Explain what	is meant by	elastically d	eformed'.		

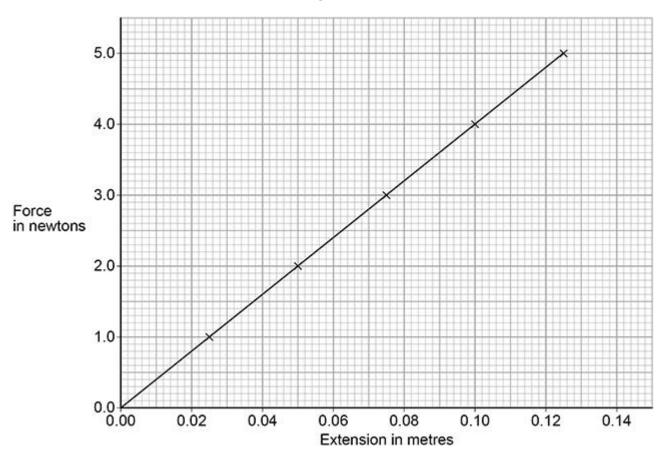
(2)

A student investigated the relationship between the force applied to a spring and the extension of the spring.

Figure 2 below shows the results.

Figure 2

(b)	Describe a method the student could use to obtain the results given in Figure 2 .
	You should include a risk assessment for one hazard in the investigation.


Your answer may include a diagram.

		_
Which equation links extension (e), force	e (F) and spring constant (K).	
Tick (✓) one box.		
force = spring constant \times (extension) ²		
force = spring constant × extension		
force = $\frac{\text{extension}}{\text{spring constant}}$		
force = spring constant extension		

Figure 2 is repeated below.

Figure 2

(d) Determine the spring constant of the spring.

(1)

	Spring constant =N	1 /m
The student concluded:		
The extension of the spring is direct	ctly proportional to the force applied to the spring.'	
Describe how Figure 2 supports th	ne student's conclusion.	
The student repeated the investiga N/m.	tion using a different spring with a spring constant of 13	
Calculate the elastic potential energ	gy of the spring when the extension of the spring was 20 o	cm.
Use the Physics Equations Sheet.		