Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_Particle Model Of Matter (Standard Demand Questions)

	the Student:rks : 23 Marks	Time : 23 Minutes
Mark Schemes		
Q1.		
(a)	(matt) black is a good emitter of infrared / radiation	
	accept heat for infrared / radiation	
	ignore reference to good absorber	
	attracts heat negates this marking point	1
		-
	to give maximum (rate of) energy transfer (to surroundings)	
	accept temperature (of coolant) falls fast(er)	
	accept black emits more radiation for 1 mark	
	black emits most radiation / black is the best emitter of radiation f marks	or 2
		1
(h)	the fins increase the surface area	
(b)		
	accept heat for energy	1
	so increasing the (rate of) energy transfer	
	or	
	so more fins greater (rate of) energy transfer	1
		-
(c)	114 000	
	allow 1 mark for correct temperature change, ie 15 (°C)	
	or	
	allow 2 marks for correct substitution, ie $2 \times 3800 \times 15$	
	answers of 851 200 or 737 200 gain 2 marks	
	or	
	substitution 2 × 3800 × 112 or 2 × 3800 × 97 gains 1 mark	
	an answer of 114 kJ gains 3 marks	
	Q	3
(d)	increases the efficiency	
(u)	increases the emolericy	1
	less (input) energy is wasted	
	accept some of the energy that would have been wasted is (useful used	ully)
	or	
	more (input) energy is usefully used	
	more (input) energy is useruily useu	

Q2.

(a) conduction

1

1

- (b) (i) any **one** from:
 - starting temperature (of cold water) temperature is insufficient
 - pipe length accept size of pipe
 - pipe diameter
 - pipe (wall) thickness
 - volume of cold water accept amount for volume
 - temperature of hot water (in)
 - time

1

(ii) copper

1

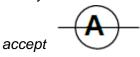
greatest temperature change

only scores if copper chosen accept heat for temperature accept heated water the fastest accept it was hottest (after 10 minutes) accept it is the best / a good conductor

1

(c) the pipe has a larger (surface) area accept pipe is longer

1


1

(so) hot / dirty water (inside pipe) is in contact with cold / clean water (outside pipe) for longer

[6]

Q3.

(a) (i) ammeter symbol correct and drawn in series

do not accept lower case a

1

(ii) adjust / use the variable resistor accept change the resistance

or

change the number of cells

accept battery for cell

accept change the pd / accept change the voltage

accept increase / decrease for change

1

1

(b) (i) $37.5 (\Omega)$ accept answer between 36 and 39 inclusive

1

(ii) 5.6(25) **or** their (b)(i) \times 0.15 allow **1** mark for correct substitution ie 37.5 **or** their (b)(i) \times 0.15 provided no subsequent step shown

2

(c) (i) the thick<u>er</u> the putty the low<u>er</u> the resistance answer must be comparative accept the converse

1

- (ii) any **one** from:
 - measuring length incorrectly accept may be different length
 - measuring current incorrectly do not accept different currents
 - measuring voltage incorrectly do not accept different voltage
 - ammeter / voltmeter incorrectly calibrated
 - thickness of putty not uniform
 do not accept pieces of putty not the same unless qualified
 - meter has a zero error
 do not accept systematic / random error
 accept any sensible source of error eg putty at different temperatures
 do not accept human error without an explanation
 do not accept amount of putty not same

1

[8]