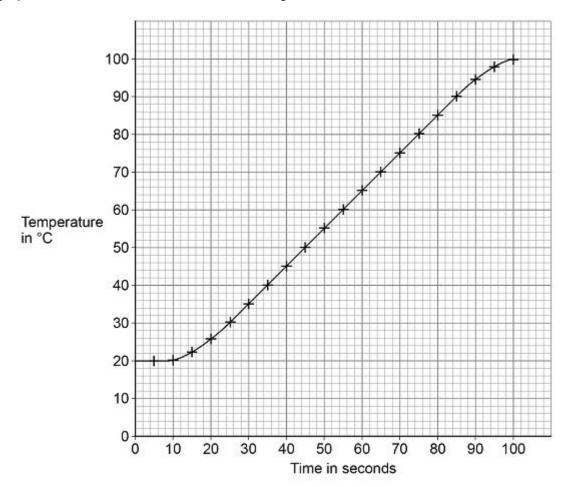
Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_Particle Model Of Matter (Low Demand Questions)


	the Student rks : 18 Mark					 Time : 18 Mii	nute	
1.								
A st	udent heated v	water in an e	electric kettle.					
(a)	Water has a	high specific	heat capacit	y.				
	Complete the sentence.							
	Choose ansv	wers from th	e box.					
	°C	J	kg	S	W			
	The specific	heat capacit	ty of a substa	nce is the er	nergy needed to	raise the		
	temperature	of 1	of the s	ubstance by	1		(2)	
(b)	reaches 100	°C. correct symb	s a thermistor		ed to switch the	kettle off when the water		
	200 - 1]		(1)	
(c)	The resistance of the heating element in the kettle is 15 Ω .							
	The current in the heating element is 12 A.							
	Calculate the power of the heating element.							
	Use the equation:							
	Use the equa	ation:						

Power = _____ W

(2)

The student investigated how quickly the kettle could increase the temperature of 0.50 kg of water.

The graph below shows the results of the investigation.

(d) The temperature of the water did **not** start to increase until 10 seconds after the kettle was switched on.

What is the reason for this?

Tick (✓) one box.

Energy is transferred from the surroundings to the kettle.

The charge flows slowly through the kettle circuit.

The heating element in the kettle takes time to heat up.

		
The mass of water in the kettle was 0.50 kg.		
The temperature of the water increased from	20 °C to 100 °C.	
The temperature of the water increased from		
	C	
specific heat capacity of water = 4200 J/kg/°		
specific heat capacity of water = 4200 J/kg/° Calculate the energy transferred to the wate		
specific heat capacity of water = 4200 J/kg/° Calculate the energy transferred to the wate		
The temperature of the water increased from specific heat capacity of water = 4200 J/kg/° Calculate the energy transferred to the wate Use the Physics Equations Sheet.		
specific heat capacity of water = 4200 J/kg/° Calculate the energy transferred to the wate		
specific heat capacity of water = 4200 J/kg/° Calculate the energy transferred to the wate		
specific heat capacity of water = 4200 J/kg/° Calculate the energy transferred to the wate		

The power output of the kettle increases slowly.

Calculate the energy transferred to change the water	to steam.	
Use the Physics Equations Sheet.		
	Energy =	J (3)
		(5) (Total 18 marks)