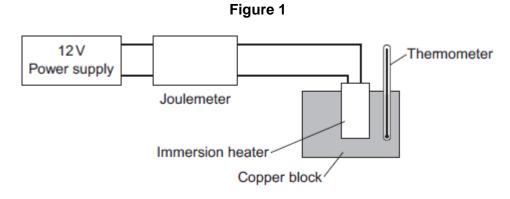
Practice Question Set For GCSE

Subject: Physics



Paper-1 Topic: GCSE Triple Science_Particle Model Of Matter (High Demand Questions)

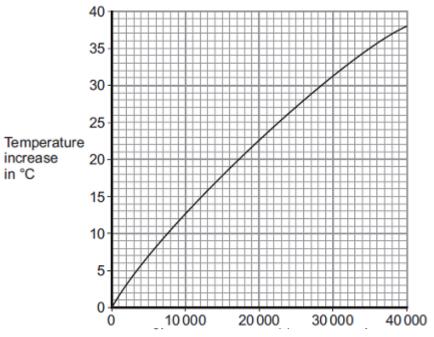
Name of the Student:_	
Max. Marks: 19 Marks	Time: 19 Minutes

Q1.

A student used the apparatus in **Figure 1** to obtain the data needed to calculate the specific heat capacity of copper.

The initial temperature of the copper block was measured.

The power supply was switched on.


The energy transferred by the heater to the block was measured using the joulemeter.

The temperature of the block was recorded every minute.

The temperature increase was calculated.

Figure 2 shows the student's results.

Figure 2

(a)	Energy is trar	nsferred through the copper block.
	What is the n	ame of the process by which the energy is transferred?
	Tick (✔) one	box.
	Conduction	
	Convection	
	Radiation	
(b)	Use Figure 2 copper block	to determine how much energy was needed to increase the temperature of the by 35 °C.
		joules

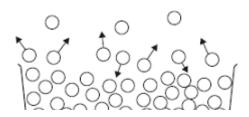
(c)

The copper block has a mass of 2 kg.

Use your answer to part (b) to calculate the value given by this experiment for the specific heat capacity of copper. Give the unit.

Specific heat capacity = _____

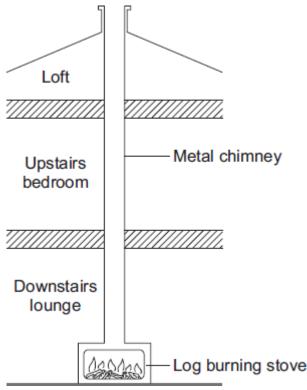
(3)


(1)

(1)

((d)	This experiment does not give the correct value for the specific heat of copper.	
		Suggest one reason why.	
			(1) (Total 6 marks)
	Acco	ording to kinetic theory, all matter is made up of small particles. The particles are cons	tantly
	movi Diag	ram 1 shows how the particles may be arranged in a solid.	
		Diagram 1	
((a)	One kilogram of a gas has a much larger volume than one kilogram of a solid.	
		Use kinetic theory to explain why.	
			(4

(b) **Diagram 2** shows the particles in a liquid. The liquid is evaporating.


Diagram 2

How can you tell from Diagram 2 that the liquid is evaporating?	
The temperature of the liquid in the container decreases as the liquid evaporat	es.
Use kinetic theory to explain why.	
· 	
	-
	-
	(Total 8 ma

Q3.

The diagram shows how the metal chimney from a log-burning stove passes through the inside of a house.

	<u> </u>
	nough the outside of the chimney becomes very hot, there is no insulating material around chimney.
the	chimney.
the	chimney. Explain, in terms of the particles in a metal, how heat is transferred by conduction from
	Explain, in terms of the particles in a metal, how heat is transferred by conduction from
the	chimney. Explain, in terms of the particles in a metal, how heat is transferred by conduction from

(1) (Total 5 marks)