Practice Question Set For GCSE

Subject : Physics

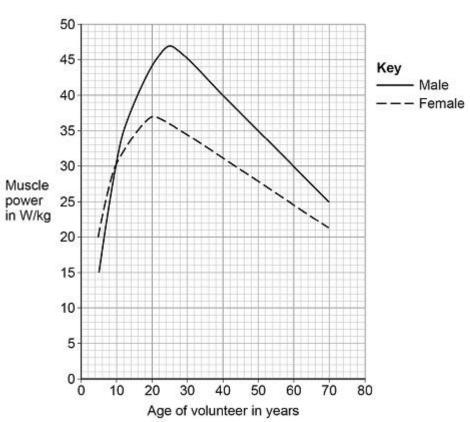
Paper-1 Topic: GCSE Triple Science_ENERGY (Standard Demand Questions)

ax. Marks : 20 Marks	Time : 20 Minutes
Q1.	
A scientist investigated how the maximum muscle po	wer of humans varies with age and gender.
The scientist asked volunteers to stand on a platform	and to jump as high as they could.
Figure 1 shows a volunteer taking part in the experir	nent.
Figure	1
	Platform
An electronic timer measured the time that the volun	eer was in the air.
(a) The muscle power in watts per kg is calculated	using the following equation:
muscle power = $\frac{9.8}{}$	× jump height time
One volunteer has a muscle power of 41 W/kg	
He was in the air for 0.12 s	
Calculate his jump height.	
	height = m
Jump	height = m (3)

(b) Write down the equation which links kinetic energy, mass and speed.

(3)

(c) One volunteer had a kinetic energy of 270 J and a speed of 3.0 m/s at the moment he left the ground.



Mass = _____ kg

Figure 2 shows the scientist's results.

Calculate his mass.

Figure 2

(d) Compare the muscle power of males with the muscle power of females.

Use data from ${\bf Figure~2}$ in your answer.

		_
		_
		_
		_
		_ (4)
(e)	The muscle power of each volunteer was measured five times.	``
	The highest muscle power reading was recorded instead of calculating an average.	
	Suggest one reason why.	
		_
		_
		_
		- (1)
		(Total 12 marks)
Q2.		
THE	image shows a battery-powered drone.	
(a)	Complete the sentences.	
	Choose the answers from the box.	
	chemical elastic potential	

As the drone accelerates upwards
its ______ energy increases

	and its energy increases.	
	The energy store	
	of the battery decreases.	(3)
(b)	In the USA, drones are not allowed to be flown too high above the ground.	(3)
	Suggest one possible risk of flying a drone too high above the ground.	
		(2)
(c)	Write down the equation that links energy transferred, power and time.	
(d)	The drone can fly for 25 minutes before the battery needs recharging.	(1)
	The power output of the battery is 65.0 W	
	Calculate the maximum energy stored by the battery.	
	Maximum energy =	•
		(3) (Total 8 marks)