Practice Question Set For GCSE

biofuel

Subject : Physics

Paper-1 Topic: GCSE Triple Science_ENERGY (Low Demand Questions)

Merit Minds www.merit-minds.com
Exam Preparation and Free Resources

Name of the Student:	
Max. Marks: 19 Marks	Time: 19 Minutes

Q1.

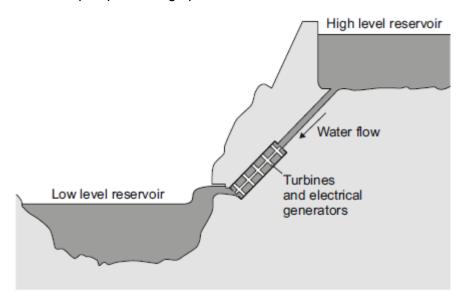
Different energy sources are used to generate electricity.

coal

(a) Use words from the box to match the correct energy source to each of the descriptions given in the table.

nuclear

waves


Description	Energy source
Energy from the Earth's core is used to heat water.	
Fission of uranium nuclei is used to heat water.	
Gases from rotting plant material are burned to heat water.	

geothermal

(3)

(b) Energy can be stored in a pumped storage power station.

The figure shows a pumped storage power station.

When electricity is needed, the water in the high level reservoir is allowed to flow to the low level reservoir. The flowing water generates electricity.

Use the correct answer from the box to complete each sentence.

ε	electrical	gravitational potentia	al kinetic	nuclear	sound	
The	water in the	high level reservoir store	es	energy.		
The	flowing wat	er has er	nergy.			
The	water turns	the turbine which is con	nected to the (generator.		
The	generator p	oroduces some	, this is v	wasted energy.		
The	total power	input to a pumped stora	ge power stat	ion is 600 MW.		
The	useful powe	er output is 540 MW.				
(i)	Calculate	the efficiency of this pum	nped storage p	oower station.		
						_
						_
				Efficier	ncy =	
(ii)	Calculate	how much power is was	ted by the pur	nned storage p	ower station	
()	Galoulato	now mach power to was	iod by the pull	mpod otorago p	owor otation.	
				Power	=	MW
(iii)	How is the	e temperature of the surro	oundings affe	cted by the ene	ray wasted h	v the
(''')		torage power station?	oundings and	Sica by the ene	igy wasiou b	y tilo
						(Total 10 m

Q2.

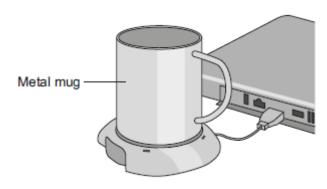
The electric kettle shown below is used to boil water.

©leeser87/iStock

After the water has boiled, the temperature of the water decreases by 22 °C. (a) The mass of water in the kettle is 0.50 kg.

The specific heat capacity of water is 4200 J/kg °C.			
alculate the energy transferred to the surroundings from the water.			

(b) Why is the total energy input to the kettle higher than the energy used to heat the water?Tick (✔) one box.


	Tick (✔)
Energy is absorbed from the surroundings.	
Energy is used to heat the kettle.	
The kettle is more than 100% efficient.	

(1) (Total 3 marks)

Q3.

A heater uses energy from a laptop computer to keep a drink hot.

The image shows a metal mug on the heater.

(a) The laptop computer is operating on battery power. How would connecting the heater affect the amount of time the laptop computer would operate for, before needing to be recharged?

Tick (✔) one box.

	Tick (🗸)
it would decrease the time	
it would not affect the time	
it would increase the time	

(1)

	(2)
) ;	es

(c) The table lists changes that may affect the energy transfer per second from the heater to the liquid.

Tick (\checkmark) one box to show the effect of each change.

	Energy transfer per second to the liquid			
Change	increases	decreases	does not change	
use a mug with a smaller base				
use a lower power heater				
use a plastic mug instead of a metal mug				

(3) (Total 6 marks)