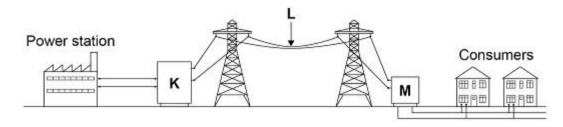
Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_ENERGY (Low Demand Questions)


@(Merit Minds www.merit-minds.com
Exam Pre	paration and Free Resources

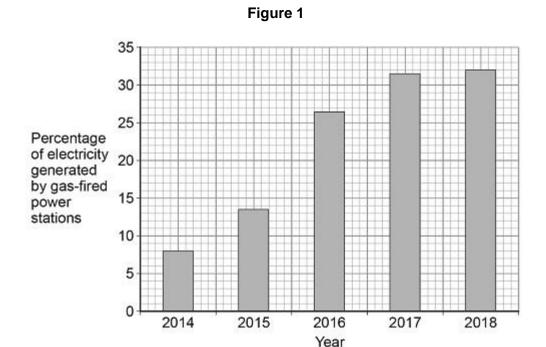
ame of the Student:

Max. Marks: 17 Marks Time: 17 Minutes

Q1.

The diagram below shows how the National Grid connects power stations to consumers.

(a) Name the parts of the National Grid labelled K, L and M.

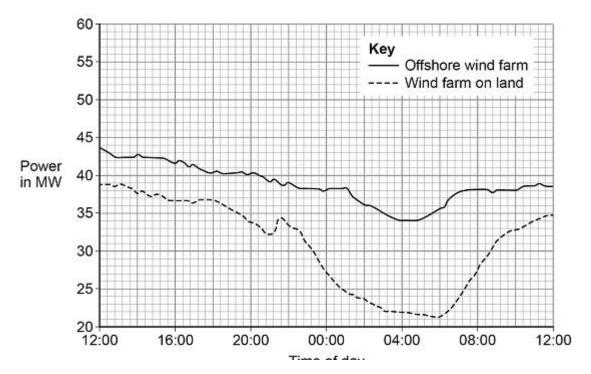

K = _____

L=

M = _____

(3)

Figure 1 shows how the percentage of electricity generated by gas-fired power stations changed in the UK over 5 years.



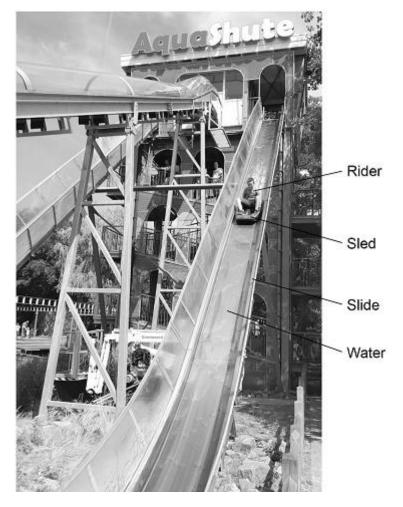
(b) Calculate how many times greater the percentage of electricity generated by gas-fired power stations was in 2018 than in 2014.

	Num	ber of times greater =
Explain one environmental e	ffect of generating elect	ricity using a gas-fired power station.
What is a renewable energy		erated using renewable energy resource
Tick (✓) one box.	resource:	
An energy resource that car	n be burned	
		(A)————————————————————————————————————
An energy resource that car	n be recycled	3
An energy resource that car		,

Figure 2 shows the power output of an offshore wind farm compared with a wind farm on land for a 24-hour period.

Figure 2

Give **two** advantages of the offshore wind farm compared with the wind farm on land.


Use information from Figure 2.

1	 	 	 _
			_
2			
		 	 _

(2) (Total 10 marks)

Q2.

The photograph below shows a theme park ride called AquaShute.

(a) Riders of the AquaShute sit on a sled and move down a slide.

There is a layer of water between the sled and the slide.

How does the layer of water affect the friction between the sled and the slide?

Tick (✓) one box.

The friction is decreased.	3
The friction is increased.	3
The friction is not affected.	

(1)

(b) The mass of one rider is 62.5 kg.

The height of the slide is 16.0 m.

gravitational field strength = 9.8 N/kg

Calculate the gravitational potential energy of the rider at the top of the slide.

Use the equation:

gravitational potential energy = mass × gravitational field streng	th × height
	_
	_
Gravitational potential energy =	J
At the bottom of the slide the speed of the rider is 12 m/s.	
The mass of the rider is 62.5 kg.	
Calculate the kinetic energy of the rider at the bottom of the slide.	
Use the equation:	
kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$	
Kinetic energy =	J
1	_
2	_
	_
	─ (Total 7 ma
	Gravitational potential energy = At the bottom of the slide the speed of the rider is 12 m/s. The mass of the rider is 62.5 kg. Calculate the kinetic energy of the rider at the bottom of the slide. Use the equation: kinetic energy = 0.5 × mass × (speed) ²