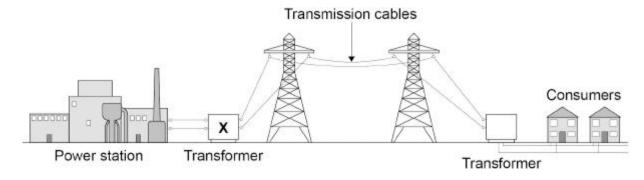
Practice Question Set For GCSE


Subject: Physics

Paper-1 Topic: GCSE Triple Science_Electricity (Standard Demand Questions)

Name of the Student:	
Max. Marks : 24 Marks	Time : 24 Minutes

Q1.

The figure below shows how the National Grid connects a power station to consumers.

(a) Complete the sentences.

Transformer **X** causes the potential difference to ______.

Transformer **X** causes the current to ______.

(2)

Use the Physics Equations Sheet to answer parts (b) and (c).

(b) Which equation links current (I), power (P) and resistance (R)?

Tick (✓) one box.

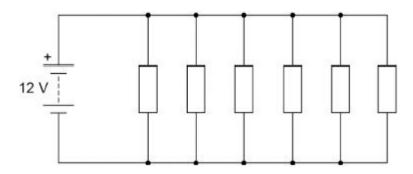
$$P = \frac{I}{R}$$

$$P = \frac{I}{R^2}$$

$$P = I^2 R$$

(1)

(c) A transmission cable has a power loss of 1.60×10^9 W.


The current in the cable is 2000 A.

	Calculate the resistance of the cable.	
		Ω
€ .	the Physics Equations Sheet to answer parts (d) and (e).	
	Write down the equation which links efficiency, total energy input and useful energy of	output.
;)	The total energy input to the National Grid from one power station is 34.2 GJ.	
	The National Grid has an efficiency of 0.992	
	Calculate the useful energy output from this power station to consumers in GJ.	
	·	
	Useful energy output =	GJ
	r	Total 10 ma

Q2.

The figure below shows an electrical circuit used to heat the windscreen of a car.

Each resistor in the circuit represents a heating element.

(a) The 12 V battery supplies direct potential difference.

_		
_		
the	e Physics Equations Sheet to answer parts (b) and (c).	
V	Which equation links charge flow (Q), energy (E) and potential difference (V)?	
Т	Tick (✔) one box.	
,	$E = \frac{V}{Q}$	
E	E = QV	
	$E = \frac{Q}{V}$	
	$E = \frac{Q}{V}$ $E = \frac{V^2}{Q}$	
i	$E = \frac{V^2}{Q}$	
	$E = \frac{V^2}{Q}$ Calculate the charge flow through the 12 V battery when the battery transfers 5010 J of energy.	•
		•
		•
C	Calculate the charge flow through the 12 V battery when the battery transfers 5010 J of energy.	
C	Calculate the charge flow through the 12 V battery when the battery transfers 5010 J of energy. Charge flow =C	
C	Charge flow through the 12 V battery when the battery transfers 5010 J of energy. Charge flow =C Charge flow windscreen at a temperature of 0 °C.	
C Ic T A	Charge flow =C Che forms on the windscreen at a temperature of 0 °C. The electrical circuit transfers 5010 J of energy to the ice.	

	Specific latent heat of fusion of water =	J/kg		
The electrical circuit was left switched on while the ice changed from a solid to a liquid and increased in temperature to 5 °C.				
Explain the changes in the arrangement and movement of the particles as the ice melted and the temperature increased to 5 °C.				

Downloaded from www.merit-minds.com

(Total 14 marks)