Practice Question Set For GCSE

Subject: Physics

1

1

1

1

[8]

Paper-1 Topic: GCSE Triple Science_Electricity (Low Demand Questions)

Name of the Student:	

Max. Marks: 26 Marks Time: 26 Minutes

Mark Schemes

Q1.

(a)
$$R = \frac{36.0}{3}$$

 $R = 12.0 (\Omega)$

(b)
$$0.1 \Omega$$

(c) The measurements are grouped closely together

(d) The results give a straight line that would go through the origin.

(e) 84 (Ω) allow an answer between 83 and 85 (Ω) inclusive

(f) decreases

decreases 1

Q2.

(a) kg allow kilogram

°C

allow degrees Celsius

(c) $P = 12^2 \times 15$

		1
(d)	The heating element in the kettle takes time to heat up	1
(e)	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced 3–4	3–4
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2
	No relevant content	0
	Indicative content:	
	 measure the mass of water using a balance or 	
	measure the volume of water using a measuring cylinder measure the initial temperature of the water pour the water into the kettle put temperature probe in the water or put a thermometer in the water switch kettle on record temperature measure time with a stopclock	
(f)	• use an interval of 5 seconds $\Delta\Theta = 80 (^{\circ}\text{C})$	
	$E = 0.50 \times 4200 \times 80$ $allow E = 0.50 \times 4200 \times their value of \Delta\Theta$	1
	E = 168 000 (J) allow an answer consistent with their value of $\Delta\Theta$	1
(g)	m = 0.005 (kg)	1
	$E = 0.005 \times 2\ 260\ 000$ this mark may score if m is not/incorrectly converted	1
	E = 11 300 (J) allow an answer consistent with their value of m	1 [18]

P = 2160 (W)