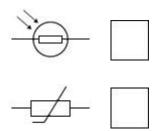
Practice Question Set For GCSE

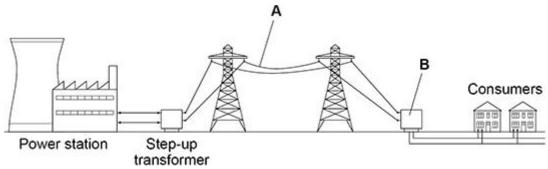
Subject: Physics



Paper-1 Topic: GCSE Triple Science_Electricity (Low Demand Questions)

Name of the St		Time : 20 Minutes
Q1.		
A nair drye	r contains three heating elements.	
The figure I	below shows the circuit diagram for the heating eleme	ents in the hair dryer.
In the figure	e the heating elements are represented by resistor sy	mbols.
	S ₁ Power supply	
	S_2	
	S ₃	
(a) Comp	plete the sentence.	
	hree resistors in above diagram are connected in	with the power
suppl	y.	(1)
(b) Which	h switch must always be closed for the hair dryer to w	
Tick ((✓) one box.	
S ₁		
S_2		
S_3		
		(1)

(c) Which switches must be closed for the hair dryer to work at maximum power output?


	Tick (✓) one box.	
	S_1 and S_2	
	S ₁ and S ₃	
	S_1 , S_2 and S_3	(4)
Use	the Physics Equations Sheet to answer parts (d) and (e).	(1)
(d)	Write down the equation which links energy transferred (E), power (P) and time (t).	
		(1)
(e)	The heating elements have a maximum power output of 1200 W.	
	The energy transferred to the heating elements to reach normal operating temperature is 3600 J.)
	Calculate the time taken for the heating elements to reach normal operating temperature at maximum power output.	
	Time =s	(3)
(f)	The hair dryer has LEDs to indicate the power setting.	
	What is the circuit symbol for an LED?	
	Tick (✔) one box.	

(1) (Total 8 marks)

Q2.

The figure below shows part of the National Grid linking a power station to consumers.

Power station Step-up transformer	Consumers
a) Name the parts of the figure above labelled A and B .	
A B	
В	(2)
Electricity is transmitted through A at a very high potential difference.	
What is the advantage of transmitting electricity at a very high potential d	ifference?
Tick (✓) one box.	
A high potential difference is safer for consumers.	
Less thermal energy is transferred to the surroundings.	
Power transmission is faster.	
	(1)
The power station generates electricity at a potential difference of 25 000	V.
The energy transferred by the power station in one second is 500 000 00	00 J.
Calculate the charge flow from the power station in one second.	
Lies the equation.	

Use the equation:

		charge flow	= ————		
			Charge flow in one second =	C	
					(
he e	electricity sup	ply to a house has a poten	tial difference of 230 V.		
he t	table below sh	nows the current in some a	ppliances in the house.		
App	liance	Current in amps			
Dish	washer	6.50			
DVD) player	0.10			
Lam	р	0.40			
TV		0.20			
				_	
			Total power =	W	
e)	Each appliar	nce in the table above is sw	vitched on for 2 hours.		
	Which applia	ance will transfer the most o	energy?		
	Give a reaso	on for your answer.			
	Appliance _				
	Reason				
					(

ſ	(2) (Total 12 marks
Average energy transferred =	J
Calculate the average energy transferred each year from the National Grid for each path the UK.	person in
There are 32 000 000 seconds in one year.	
The average energy transferred from the National Grid every second for each person is 600 J.	in the UK

(f)