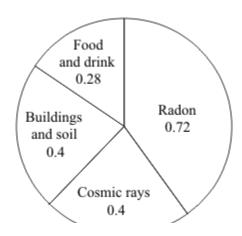
Practice Question Set For GCSE

Subject: Physics



Paper-1 Topic: GCSE Triple Science Atomic Structure (Standard Demand Questions)

		Student: Time :	21 Minutes
Q1. (a)	The	e table gives information about the radioactive isotope, radon-222.	
		mass number 222	
		atomic number 86	
		radiation emitted alpha particle	
	(i)	Complete the following sentence.	
		The mass number is the total number of and	
		inside an atom.	(2)
	(ii)	Radon-222 is an isotope of radon.	(2)
		How many protons are there in an atom of radon-222?	
			(1)
	(iii)	When an atom of radon-222 emits an alpha particle, the radon-222 changes into atom of polonium-218.	an
		An alpha particle consists of 2 protons and 2 neutrons.	
		How is the structure of the nucleus of a polonium-218 atom different from the structure of a radon-222 atom?	ture of
			(1)
(b)		e pie chart shows the average radiation dose that a person in the UK receives each m natural background radiation.	

The doses are measured in millisieverts (mSv).

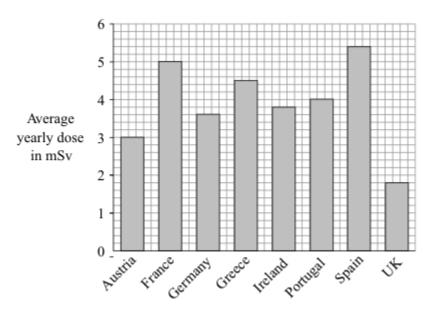
Downloaded from www.merit-minds.com

(i) Calculate the proportion of natural background radiation that comes from radon. Show clearly how you work out your answer.

Proportion of radon = _____

(2)

(1)


(1)

(ii) Not all background radiation is from natural sources.

Name one source of background radiation that is not natural.

(c) The bar chart shows the average yearly dose from natural background radiation in different European countries.

(i) How many times bigger is the average annual background dose in Germany compared to the UK?

(ii) The following table gives the effects of different radiation doses on the human body.

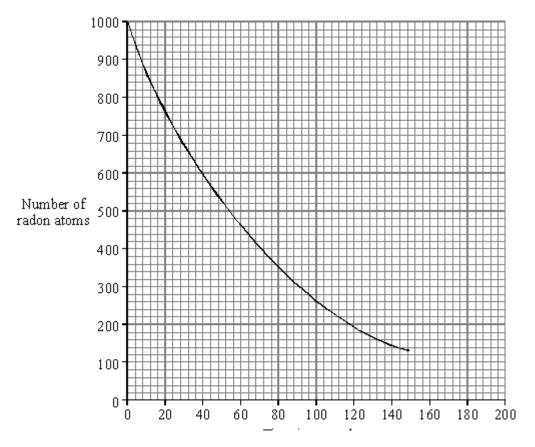
Radiation dose in mSv	Effects
10 000	Immediate illness; death within a few weeks
1 000	Radiation sickness; unlikely to cause death
50	Lowest dose with evidence of causing cancer

A family goes to Germany for a two-week holiday. Should they be concerned about the higher level of background radiation in Germany?

Draw a ring around your answer.

Yes

No


Explain your a	nswer.			
			 	 _
				_
			 	 _

(2)

(Total 10 marks)

Q2.

Radon is a radioactive element. The graph shows how the number of radon atoms in a sample of air changes with time.

(i	i)	How long	did it take t	he number	of radon	atoms in t	he sample	e of air to	fall from	1000 to 500?

Time = _____ seconds

(1)

(ii) How long is the half-life of radon?

Half-life = ______ seconds

(1)

(iii) Complete this sentence by crossing out the **two** lines in the box that are wrong.

As a radioactive material gets older, it emits

less
a constant level of
more

radiation per second.

(1) (Total 3 marks)

(1)

Q3.

Some types of food are treated with *gamma* radiation. Low doses of radiation slow down the ripening of fresh fruit and vegetables while higher doses of radiation kill the bacteria that make the food go off.

(a) (i) What is gamma	radiation?
-----------------------	------------

	_			
	_		e isotope caesium	
Complete th	e following sent	ence by choosir	ng the correct word	I from the box.
	electrons	neutrons	protons	
An atom of caesium 13		s two more		than an atom of
diagram abo	va haw a ganya	var halt oan ha i	used to make food	post the radioactive
e.	ws now a conve	yor belt can be t	used to move 100d	past the radioactive
Foo	od in			
	Gamma source	Concrete View from above		
How do the treatment as		reduce the radia	tion hazard to wor	kers outside the food
			received by the fo	

(b)

The diagram show	ws the sign displayed	on food treated with	radiation.	
Why is it importan	t for people to know w	hich foods have be	en treated with radiation	on?

(c)