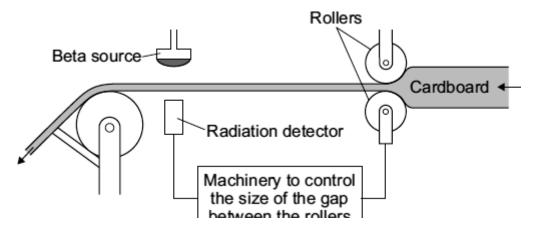
Practice Question Set For GCSE

Subject : Physics

<u> ଏ</u> ଡି	Merit Minds
00	www.merit-minds.com
Exam Prepara	tion and Free Resources

Name of the Student:	
Max. Marks: 18 Marks	Time : 18 Minutes

Q1.


(a) The names of the three types of nuclear radiation are given in **List A**. Some properties of these types of radiation are given in **List B**.

Draw a straight line to link each type of radiation in List A to its correct property in List B.

Draw only **three** lines.

List A Type of nuclear radiation	List B Property of radiation
	Has the same mass as an electron
Alpha	
	Very strongly ionising
Beta	_
	Passes through 10 cm of aluminium
Gamma	_
	Deflected by a magnetic field but not deflected by an electric field

(b) The diagram shows a system used to control the thickness of cardboard as it is made.

The cardboard passes through a narrow gap between a beta radiation source and a radiation detector.

The table gives the detector readings over 1 hour.

Time	Detector reading			
08:00	150			
08:15	148			
08:30	151			
08:45	101			
09:00	149			

Between 08:00 and 08:30, the cardboard is produced at the usual, correct thickness.
Explain how you can tell from the detector readings that the cardboard produced at 08:45 is thicker than usual.

(ii) Which would be the most suitable half-life for the beta source?

Draw a ring around your answer.

six days six months six years
(1)

iii) This control system would **not** work if the beta radiation source was replaced by an alpha radiation source.

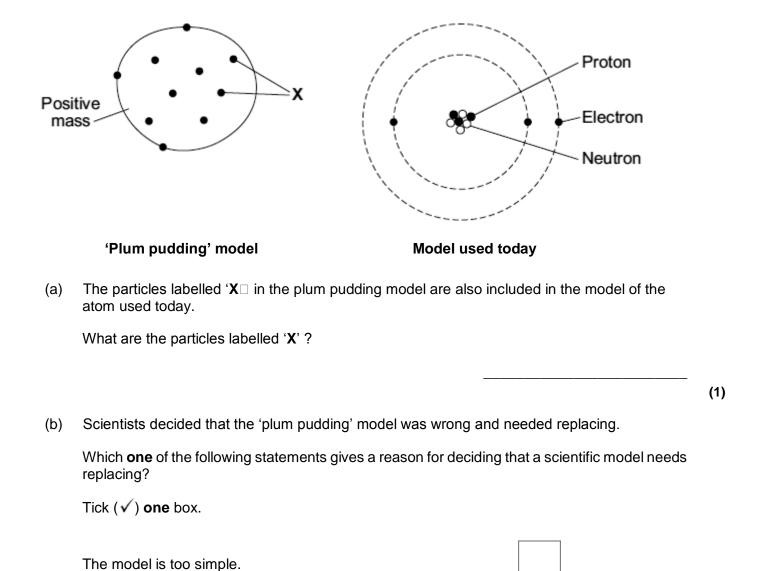
Why not?

(2)

_	<u> </u>	 	 	
(1)				
(Total 7 marks)				

Q2.

The names of three different processes are given in ${\bf List}~{\bf A}.$ Where these processes happen is given in ${\bf List}~{\bf B}.$


Draw a line to link each process in **List A** to where the process happens in **List B**.

Draw only **three** lines.

List A	List B	
Process	Where it happens	
		1
	in a star	
	<u> </u>	
fusion		
	in a nuclear reactor	
	in a nuclear reactor	
chain reaction		
		1
	in a smoke precipitator	
	<u> </u>	
alpha decay		
	in the purpleus of an atom	
	in the nucleus of an atom	
		(Total 3 marks)

Q3.

The diagrams show two different models of an atom.

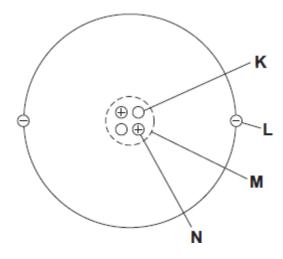
The model has been used by scientists for a long time.

The model cannot explain the results from a new experiment.

(1)

(c) The table gives information about the three types of particle that are in the model of the atom used today.

Particle	Relative mass	Relative charge		
	1	+1		


very small	– 1
1	0

Complete the table by adding the names of the particles.

(2) (Total 4 marks)

Q4.

(a) The diagram represents a helium atom.

1	i)	\//hich	nart of	the atom	K	I M	or N	ic an	electron	2
(I)	vvnicn	part or	the atom	I, n ,	L, IVI	OF IN.	is an	election	:

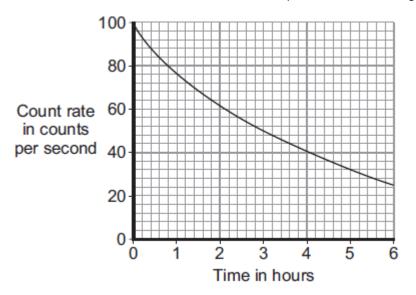
Part (1)

(ii) Which part of the atom, **K**, **L**, **M** or **N**, is the same as an alpha particle?

Part (1)

(b) A radioactive source emits alpha particles.

What might this source be used for?


Put a tick (\checkmark) in the box next to your answer.

to monitor the thickness of aluminium foil as it is made in a factory

to make a smoke detector work

(1)

(c) The graph shows how the count rate from a source of alpha radiation changes with time.

What is the count rate after 4 hours?

Co	ounts per second
	(1)
	(Total 4 marks)