Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science Atomic Structure (High Demand Questions)

Иa	rks : 17 Marks			Time : 17 Mir
Γhe	table gives the propert	ties of some radionuclide	es (radioactive isotopes).	
	Radionuclide	Half life	Main type of radiation emitted	
	Radon-220	54.5 seconds	Alpha	
	Americium-241	433 years	Alpha	
	Phosphorus-32	14 days	Beta	
	Strontium-90	28 years	Beta	
	Technetium-99	6 hours	Gamma	
	Cobalt-60	5 years	Gamma	
i)	Explain the reason fo		ring the thickness of aluminium	1 TOII ?
(ii)	Which radionuclide v	would be best for acting	as a tracer inside the human b	pody?
	Explain the reason fo	or your answer.		

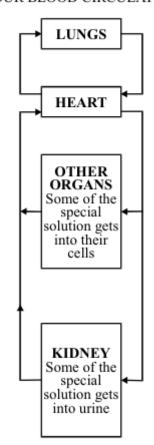
(Total 4 marks)

Q2.

 $^{99}_{43}\text{Tc}$ (technetium) is produced by the radioactive decay of $^{99}_{42}\text{Mb}$ (molybdenum).

What change occurs in the nucleus of a molybdenum atom when this happens?

(Total 1 mark)


Q3.

Doctors sometimes need to know how much blood a patient has.

They can find out by using a radioactive solution.

After measuring how radioactive a small syringe-full of the solution is they inject it into the patient's blood.

YOUR BLOOD CIRCULATION

They then wait for 30 minutes so that the solution has time to become completely mixed into the blood.

Finally, they take a syringe-full of blood and measure how radioactive it is.

Example:

If the doctor injects 10 cm^3 of the radioactive solution and this is diluted 500 times by the blood there must be $10 \times 500 = 5000 \text{ cm}^3$ of blood.

(a) After allowing for background radiation:

• 10 cm³ of the radioactive solution gives a reading of 7350 counts per minute;	
• a 10 cm ³ sample of blood gives a reading of 15 counts per minute.	
Calculate the volume of the patient's blood. (Show your working.)	
	(4)
As time passes, the solution becomes less radioactive on its own. LEVEL OF RADIATION TIME (b)	
TIME (h)	
Radiation from radioactive substances can harm your body cells.	
The doctor's method of estimating blood volume will not be completely accurate. Write down three reasons for this.	
1	
2	

(c) The doctors use a radioactive substance which loses half of its radioactivity every six hours. Explain why this is a suitable radioactive substance to use.

(2) (Total 9 marks)

(3)

Q3.

When atoms of uranium 238 (U²³⁴) decay they produce another radionuclide called thorium 234 (Th²³⁴)

Thorium 234 (Th²³⁴) decays by emitting beta radiation.

(i) What does beta radiation consist of?

	The aris are 224 (Th ²³⁸), decay to to form protectinisms 224 (De ²³⁴)			
	Thorium 234 (Th ²³⁸) decays to form protactinium 234 (Pa ²³⁴).			
	What differences are there between the nucleus of a protactinium 234 (Pa ²³⁴) atom and the nucleus of a thorium 234 (Th ²³⁴) atom?			