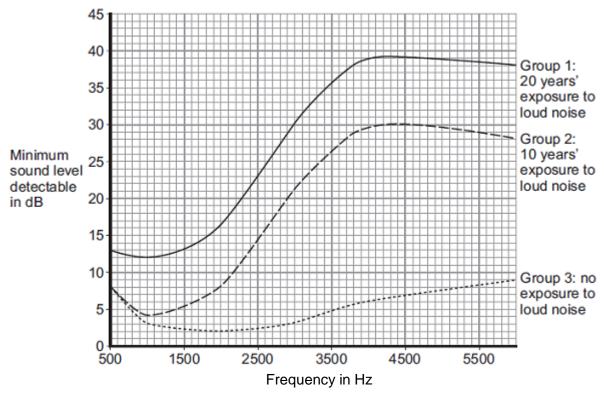
Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: Waves (High Demand Questions)



Name of the Student:	
Max. Marks : 24 Marks	Time: 24 Minutes

Q1.

Exposure to a noisy environment can damage a person's hearing.

The figure below shows the minimum sound level that is needed to detect sounds of different frequencies for three different groups of people. Sound level is measured in decibels, dB.

(a)	Which group of people has the worst hearing?	
	Group:	
	Use the information from the figure above to give a reason for your answer.	
		(1
(b)	Give three other conclusions that can be made from the figure in part (a).	

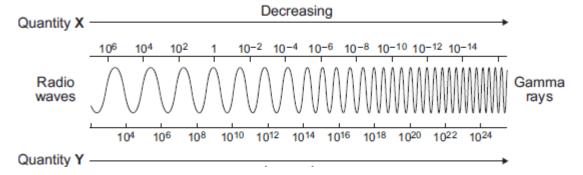
	(3)
	Total 4 marks)
•	
A Doppler probe emits high frequency sound waves.	
A doctor uses a Doppler probe to measure the pulse rate of an unborn baby in its mother's	womb.
The sound waves have a frequency of 5.24×10^6 Hz. The mean speed of sound through human body tissue is 1540 m / s.	
Calculate the wavelength of the sound wave emitted by this Doppler probe as it travels throughuman body tissue.	ugh
Give your answer to three significant figures.	
Use the correct equation from the Physics Equations Sheet.	
Wavelength =	m

wavelength = _____ m
(Total 3 marks)

Q3.

Q2.

During the day, the Sun transfers energy to an outdoor swimming pool.


© Volodymyr Burdiak/iStock

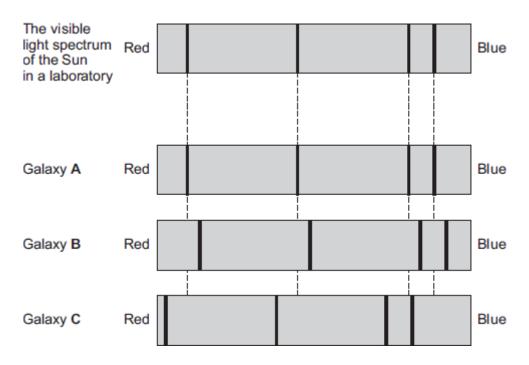
(i)	The mass of water in the pool is 5000 kg. The specific heat capacity of water is 4200 J/kg°C.
	Calculate how much energy needs to be supplied to increase the water temperature by 5°C and state the correct unit.
	Use the correct equation from the Physics Equations Sheet.
	Give the unit.
(ii)	The Sun supplies energy to the water in the pool at a rate of 16 kJ every second.
()	Calculate how much time it would take for energy from the Sun to raise the water
	temperature by 5 °C.
	You will need to use your answer to (b)(i) and the correct equation from the Physics Equations Sheet.
	You will need to use your answer to (b)(i) and the correct equation from the Physics
	You will need to use your answer to (b)(i) and the correct equation from the Physics
(iii)	You will need to use your answer to (b)(i) and the correct equation from the Physics Equations Sheet.
(iii)	You will need to use your answer to (b)(i) and the correct equation from the Physics Equations Sheet. Time = seconds
(iii)	You will need to use your answer to (b)(i) and the correct equation from the Physics Equations Sheet. Time = seconds On one day, the temperature of the pool is 7 °C lower than the air temperature. The time it takes for the pool temperature to rise by 5 °C is less than the answer to part

Q4.

The electromagnetic spectrum is shown in the diagram below.

Diagram 1

(a) Name quantities **X** and **Y**, and state the units they are measured in.


Quantity **X**: _____ Unit for Quantity **X**: _____ Unit for Quantity **Y**: _____

(3)

(b) The visible part of the electromagnetic spectrum from stars includes dark lines. These lines are at specific wavelengths.

Diagram 2 shows the visible light spectra for three galaxies, **A**, **B** and **C**, compared to the visible light spectrum of the Sun as seen in a laboratory.

Diagram 2

(i)	Using evidence from the spectra, what conclusions can be made about the movement of
	galaxies A , B and C relative to the Earth?

	_
Compare the speed of galaxy B with the speed of galaxy C relative to the obs	server. —
Explain why it is not valid to make conclusions about all galaxies in the University hese spectra.	- erse from
	_
	_