Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: Waves (High Demand Questions)

Name of the Student:	
Max. Marks: 21 Marks	Time : 21 Minutes

Q1.

(a)

Different parts of the electromagnetic spectrum are used in medical imaging.

Figure 1 shows an Figure of a person's hand taken with an infrared camera.

Figure 1

(b) Infrared has a range of wavelengths from 700 nm to 1 mm.

Which part of the electromagnetic spectrum would have waves with a wavelength of 6.5×10^{-7} m?

(2)

I IC	ck (✔) one box.	
Int	frared	
Mi	icrowaves	
Ra	adio waves	
Vi	sible light	
Fig	ure 2 shows X-rays and gamma rays	being used for medical imaging.

(c)

Figure 2

To use X-rays for medical imaging, a machine produces a very brief burst of X-rays.

To use gamma rays for medical imaging, a radioactive isotope is injected into the patient's blood. The isotope is circulated around the body in the blood. The isotope emits gamma rays.

Compare the potential risks to a patient of using X-rays and gamma rays for medical imaging							imaging.	

X-rays are produced by colliding high-energy electrons into a metal target.

(4)

(1)

with	the metal target.	
(d)	An electron is accelerated through a distance of 15 mm.	
	The work done on the electron is 1.2×10^{-13} J.	
	Calculate the force on the electron.	
		_
	Force =	
(e)	The metal target is made from tungsten.	
	Tungsten has the highest melting point of any metal.	
	Explain why using tungsten as the metal target enables the X-ray machine to be n powerful.	nore
		_
		_
		- -
		 (3 (Total 13 marks
		(Total To marks
Q2.		
	ys form part of the electromagnetic spectrum.	
Rad	liographers use X-rays to produce images of bones inside the body.	
(a)	Explain why X-rays can be used to produce images of the bones inside the body.	_
		_
		<u> </u>

The electrons have high energy because they are accelerated to high speeds.

Only a small proportion of the kinetic energy of an electron is converted into an X-ray when it collides

(3)

The table below shows the effect of exposure to different doses of radiation. (b)

Dose in mSv	Effect on the human body				
100	slightly increased risk of cancer				
1000	5% increased risk of cancer				
5000	high risk of death				

During an X-ray a person receives a dose of 0.5 mSv

The radiographer takes many X-ray images each day.

Explain v	why the i	radiographe	er stands	behind a	protective	screen	when t	aking a	n X-ray	image

(c) Radio waves form part of the electromagnetic spectrum.

The diagram below shows one use of radio waves.

Explain now electri	icai signais in the tra	ansmiller produce a si	gnai in the receiver.

(3)

(Total 8 marks)