Practice Question Set For GCSE

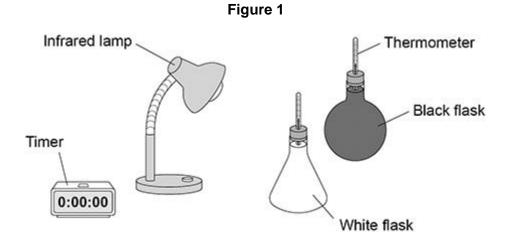
Subject: Physics

Ма	rks : 19 Marks								Time : 19	9 Minute
	acher used a ripple tank	k to der	nonstr	ate wa	iter wa	ves.				
The	teacher used a lamp to	project	a sha	dow of	the wa	ıter wa	ves onto	a screen belo	ow the ripple t	tank.
(a)	The figure below repre	esents	the sh	adow (of the v	vater v	vaves see	en on the scr	een.	
	1.0 mm on the figure a	above r	epres	ents 5.	.0 mm	on the	screen.			
	Determine an accura	te value	e for th	ne wav	elengt	h of the	e waves o	on the screer	٦.	
	Give your answer in m	nm.								
	Show how you work o	ut your	answ	er.						
						Wave	elength =			. mm (3
The	teacher adjusted the fre	equenc	y of th	e wave	es prod	duced i	n the ripp	ole tank.		•
	teacher measured the	•								
	table below shows the		-	2						
		1	l					1		
Me	asurement	1	2	3	4	5	Mean			

	metres	96	99	97	^	97	97		
(b)	Calculate value X in th	ne table	abov	e.					
							X =		 mm
(c)	The teacher states that	at the re	esults	are ve	ry pred	cise.			·
	Which of the following	suppo	rts the	state	ment n	nade b	y the tea	cher?	
	Tick (✓) one box.								
	The mean value is ve	ery clos	e to th	e true	value.		3 - 3		
	The spread of values	about	the m	ean is	very s	mall.	3		
	The values are all giv	en to t	ne nea	arest m	nillimet	re.	9		
	The wavelength mea	sureme	ent wa	s take	n five t	imes.	3		
									(
(d)	Describe the difference	e betw	een lo	ngitud	inal wa	aves a	nd transv	erse waves.	

99

96


Q2.

Wavelength in

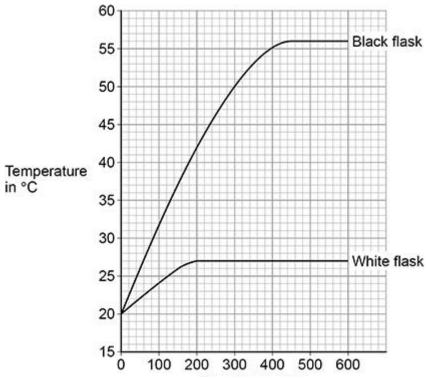
A student investigated how the colour of a surface affects the amount of infrared radiation the surface absorbs.

Figure 1 shows the equipment used.

The two flasks are painted different colours.

This is the method used.

- 1. Pour water at 20 °C into each flask.
- 2. Place a bung and thermometer into each flask.
- 3. Place each flask in front of the infrared lamp.
- 4. Measure the temperature of the water every 30 seconds for 10 minutes.


Explain **two** improvements to the method the student used.

2

Figure 2 shows the results for each flask.

Figure 2

(4)

	White flask
	20
	0 100 200 300 400 500 600
,	
	Complete the sentences.
	After 100 seconds the temperature difference between the black flask and the white flask was °C
	The temperature of the white flask stopped increasing. The temperature inside the black flask continued to increase for a further seconds.
	The initial rate of absorption of infrared radiation by the black flask was greater than the initial rate of absorption by the white flask.
	How does Figure 2 show this?
ı	Explain why the temperature of the water in the flasks increased and then became constant.

(4) (Total 11 marks)