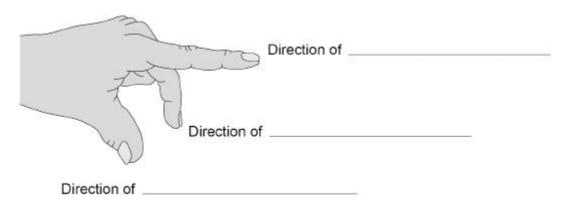
Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: Magnetism And Electromagnetism (High Demand Questions)

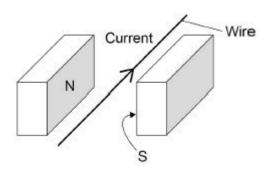


x. Marks : 26 Marks	Time : 26 Minute
4	
 Figure 1 shows the magnetic field pattern around a peri 	nanent magnet.
	3
Figure 1	
N N	S
(a) Where is the magnetic field of the magnet the stro	ngest?
	(1
(b) How does Figure 1 show that the strength of the r	nagnetic field is not the same at all places?
	(1
Figure 2 shows an electromagnet being used to separa	e iron and steel from non-magnetic metals.
Figure 2	
	Electromagnet
Pieces of metal	
STOREST SEC OF	Conveyor belt
(c) Explain one reason why an electromagnet is used	instead of a permanent magnet.
	

	Magnetia flux density	Llmit	
	Magnetic flux density =	 Unit	
	,		
			(5)

(g) Fleming's left-hand rule can be used to determine the direction of the force on wire AB.Complete the labels on Figure 4 to show Fleming's left-hand rule.

Figure 4


(2) (Total 15 marks)

Q2.

Figure 1 shows a wire in a magnetic field.

The direction of the current in the wire is shown.

Figure 1

(a) There is a force on the wire due to the current in the magnetic field.

In which direction is the force on the wire?


Tick (✓) one box.

\downarrow				
Give two ways that the direction of	the force on	the wire could be	reversed.	
1				_
2				_
Γhe length of the wire in the magne	tic field is 0.	050 m		
The force on the wire is 0.072 N				
magnetic flux density = 360 mT				
Calculate the current in the wire.				
Use the Physics Equations Sheet.				
				_
				_
				_
				_
				_
				_
				_

(d) Figure 2 shows a simple motor.

Figure 2

(4)

•	•						
		 	 		 	_	
			 			-	
		 	 		 	_	
		 	 		 	-	
				 		_	
		 	 			-	
		 	 	 	 	_	
			 			_	
				 		_	
		 	 	 	 	_	
							(4)
						(Total 11 ma	
						i i Otar I i illa	1 NO)

Downloaded from www.merit-minds.com