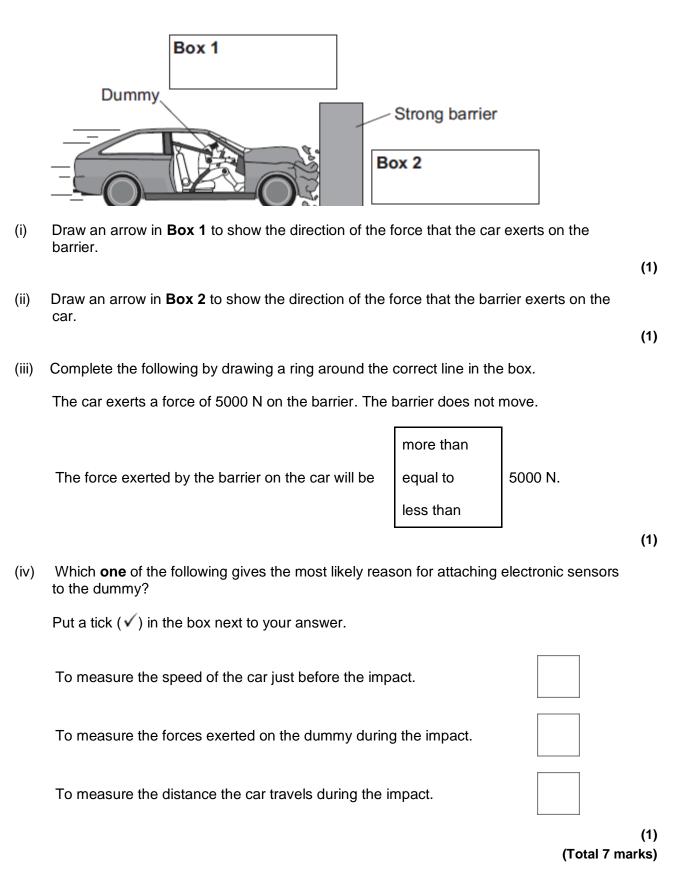
Practice Question Set For GCSE

Subject: Physics

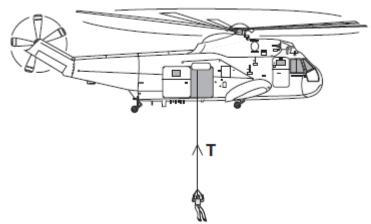
Paper-2 Topic: Forces (Low Demand Questions)

C



Name of	the Student:		
Max. Ma	rks : 18 Marks		Time : 18 Minute
Q1.			
(a)	The diagrams, A, B and C, show the h	norizontal forces acting on a moving ca	ar.
	Draw a line to link each diagram to the forces act.	description of the car's motion at the m	noment when the
	Draw only three lines.		
		stationary	
	500 N		
	Α		
		constant speed	
	200 N 500 N		
	В		
		slowing down	
	500 N 200 N		

(3)


(b) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

accelerating forwards

Q2.

The diagram shows a helicopter being used to rescue a person from the sea.

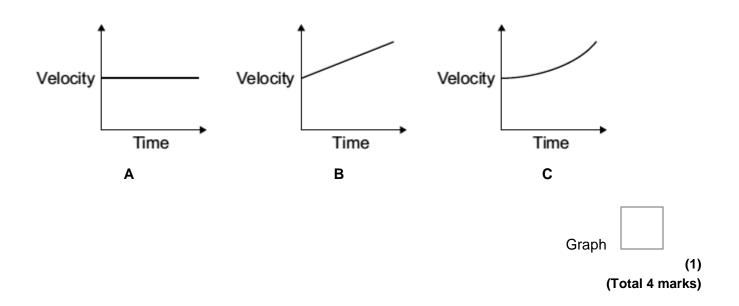
		\mathcal{B}	
(a)	(i)	The mass of the rescued person is 72 kg. Use the equation in the box to calculate the weight of the rescued person.	
		weight = mass × gravitational field strength	
		gravitational field strength = 10 N/kg	
		Show clearly how you work out your answer.	
		Weight = N	(2)
	(ii)	An electric motor is used to lift the person up to the helicopter. The motor lifts the person at a constant speed.	
		State the size of the force, T , in the cable.	
		Force T = N	(1)
(b)	To li usef	ft the person up to the helicopter, the electric motor transformed 21 600 joules of energy ully.	(1,
	(i)	Use a form of energy from the box to complete the following sentence.	
		gravitational potential heat sound	
		The electric motor transforms electrical energy to kinetic energy. The kinetic	
		energy is then transformed into useful energy.	(1)

It takes 50 seconds for the electric motor to lift the person up to the helicopter.

Use the equation in the box to calculate the power of the electric motor.

(ii)

Downloaded from www.merit-minds.com


	give the unit	ıt vour answer and	clearly how you work	Show	
	give the dim.	•	se the unit from the lis		
	watt (W)	hertz (Hz)	coulomb (C)		
	ower =	Р			
() Total 7 marks)					
	it line.	ant rate in a straigh	n accelerates at a con	-speed train	
	60 seconds.	m/s to 42 m/s in 6	e train increases from	locity of the	The ve
	60 seconds.		e train increases from ulate the change in the		
 m/s	30 seconds. age in velocity =	elocity of the train.		•	
 m/s (*	ge in velocity =	elocity of the train. Char	ulate the change in the	i) Calcul	(a) (
	ge in velocity =	elocity of the train. Char		i) Calcul	(a) (
	ge in velocity =	calculate the acce	ulate the change in the	i) Calcul	(a) (
	e in velocity =eleration of the train. e in velocity en for change	calculate the access $= \frac{\text{chang}}{\text{time take}}$	ne equation in the box	i) Calculii) Use th	(a) (

(b) Which **one** of the graphs, **A**, **B** or **C**, shows how the velocity of the train changes as it accelerates?

Write your answer, **A**, **B** or **C**, in the box.

(2)

Acceleration = _____

