Practice Question Set For GCSE

Subject : Physics

Paper-2 Topic: Forces (Low Demand Questions)

Name of the Student: Max. Marks : 18 Marks	 Time : 18 Minutes
Q1. The figure below shows an engineer climbing up a ladder.	
Rung	
The distance between each rung on the ladder is 30 cm.	
(a) What is 30 cm in metres?	
Tick (✓) one box.	
0.030 m 0.30 m 3.0 m	(1)
(b) The engineer has a weight of 710 N.	
Calculate the work done when climbing up one rung of the ladder.	
Use your answer to part (a) and the equation:	
work done = force × distance	

	Work done =	Νn
	The engineer climbs the ladder carrying some equipment.	
	Give the reason why carrying equipment increases the work done by the engineer when climbing the ladder.	
	The engineer is stationary at the top of the ladder.	
	Which energy stores of the engineer increase due to the engineer climbing the ladder?	
	Tick (✔) two boxes.	
	Chemical	
	Elastic potential	
	Gravitational potential	
	Kinetic	
	Thermal	
t	he Physics Equations Sheet to answer parts (e) and (f).	
	Write down the equation that links gravitational field strength (g) , mass (m) and weight (W)).
	The engineer has a weight of 710 N.	
	gravitational field strength = 9.8 N/kg	
	Calculate the mass of the engineer.	

	Mass (2 significant figures) =	(4)
		(Total 11 marks)
The	figure below shows an apple hanging from a tree.	
The	X marks the centre of mass of the apple.	
	X	
(a)	Draw an arrow on the figure above to represent the weight of the apple.	(1)
(b)	The apple has a mass of 0.150 kg	
	gravitational field strength = 9.8 N/kg	
	Calculate the weight of the apple.	
	Use the equation:	
	weight = mass × gravitational field strength	

Q2.

		(2)
(c)	The apple in above diagram is stationary.	
	Why is the apple stationary?	
	Tick (✓) one box.	
	The resultant force on the apple is downwards.	
	The resultant force on the apple is upwards.	
	The resultant force on the apple is zero.	(1)
Whe	en the apple is ripe it falls from the tree and accelerates towards the ground.	.,
(d)	Why does the apple accelerate?	
	Tick (✓) one box.	
	The resultant force on the apple is downwards.	
	The resultant force on the apple is upwards.	
	The resultant force on the apple is zero.	
		(1)
(e)	The acceleration of the apple is 9.8 m/s ²	
	The velocity of the apple changes from 0 to 4.9 m/s	
	Calculate the time taken for the apple to fall to the ground. Use the equation:	
	time taken = $\frac{\text{change in velocity}}{\text{acceleration}}$	
		_
		_
	Time taken =	S
		(2) (Total 7 marks)

Weight = _____ N