Practice Question Set For GCSE

Subject : Physics

Paper-2 Topic: Forces (High Demand Questions)

	the Student:rks : 24 Marks	Time : 24 Minutes
Q1.	diagram below shows a girl bowling a ball along a ten-pin bowling lane.	
		—— Pins —— Lane —— Ball
The	girl is trying to knock down the ten pins at the end of the bowling lane.	
(a)	Velocity is a vector quantity, speed is a scalar quantity.	
	Describe what is meant by a vector quantity and a scalar quantity. Vector quantity	
	Scalar quantity	
(b)	The bowling lane is horizontal.	(2)
	Explain why the bowling ball decelerates as it travels along the lane.	

	diagram below shows the bowling ball hitting one of the pins.	
c)	Write down the equation that links mass (m) , momentum (p) and velocity (v) .	
d)	The bowling ball has a velocity of 5.0 m/s when it hits the pin.	
	The momentum of the bowling ball is 26 kg m/s	
	Calculate the mass of the bowling ball.	
		_
	Mass =	kg
e)	Explain why the bowling ball slows down when it hits the pin.	
	You should use ideas about momentum in your answer.	

Q2.

The speed limit on many roads in towns is 13.5 m/s

Outside schools this speed limit is often reduced by one-third.

(a) Calculate the reduced spee
--

Reduced speed limit = _____ m/s

(2)

(2)

(b) A reduced speed limit may reduce air pollution.

Explain one d	ther advantag	e of a reduc	ed speed lin	nıt.	

Figure 1 shows a car being driven at a constant speed past a speed camera. (c)

Figure 1

The camera recorded two images of the car 0.70 s apart.

The car travelled 14 m between the two images being taken.

The maximum deceleration of the car is 6.25 m/s²

Minimum braking distance = Figure 2 shows a delivery van full of packages.	_ m	(6)
Figure 2		
Packages		
The driver delivers all the packages.		
The empty van has a shorter stopping distance than the full van when driven at the same speed.		
Explain why.		

(d)

	(3)
/	
(1	otal 13 marks)