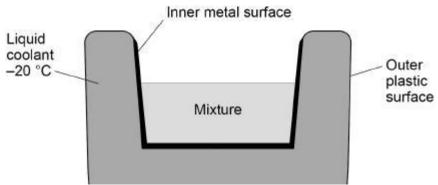
Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: Energy (High Demand)



ne of . Ma	rks : 22 Marks			Time : 22 Min	ute
١.					
	cream is made by cooli	ng a mixture of liquid in	gredients until they	freeze.	
(a)	Which statement des	scribes the motion of the	particles in solid ic	e cream?	
	Tick (✔) one box.				
	They are stationary.				
	They move freely.				
	They vibrate about f	ixed positions.			
		(3)			
(h)	Llow do the kinetic or				
(b)	How do the kinetic er and frozen? Tick (✓) one box. Kinetic energy	nergy and the potential e	nergy of the particle	es change as a liquid is cooled	(
(b)	and frozen? Tick (✓) one box.		nergy of the particle	es change as a liquid is cooled	(
(b)	and frozen? Tick (✓) one box. Kinetic energy	Potential energy	nergy of the particle	es change as a liquid is cooled	(
(b)	and frozen? Tick (✔) one box. Kinetic energy Decreases	Potential energy Decreases	nergy of the particle	es change as a liquid is cooled	(
(b)	and frozen? Tick (✓) one box. Kinetic energy Decreases Decreases	Potential energy Decreases Does not change	nergy of the particle	es change as a liquid is cooled	(

The walls of the bowl contain a liquid coolant.

The bowl is cooled to -20 °C before the mixture is put in the bowl.

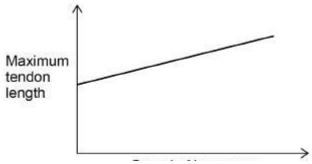
The bowl causes the mixture to cool down and freeze.

N 1	latal	
IVI	letal	
P	lastic	
Ti		
	he liquid coolant has a freezing point below –20 °C	
<u>-</u>	xplain one other property that the liquid coolant should have.	
Γŀ	he initial temperature of the mixture was +20 °C. The mixture froze at -1.5 °C.	
4	total of 165 kJ of internal energy was transferred from the mixture to cool and freeze in	it.
sp	pecific heat capacity of the mixture = 3500 J/kg °C	
sp	pecific latent heat of fusion of the mixture = 255 000 J/kg	
Ca	alculate the mass of the mixture.	
ر ا	ive your answer to 2 significant figures.	

_		
-		
-		
_		
-		
_		
-		
_		
-		
_		
-		
-		
kg	Mass (2 significant figures) =	
(6)	· · · · · · · · · · · · · · · · · · · ·	
Total 14 marks)		

Q2.

Kangaroos are large animals that travel by jumping.


The photograph below shows a kangaroo.

Each leg of a kangaroo has a tendon connected to a muscle. Each tendon can be modelled as a spring.

When a jumping kangaroo lands on the ground, the tendons stretch.

(a) The diagram below shows a sketch graph of how the maximum tendon length during a jump changes with the speed of the kangaroo.

Explain why a kangaroo can jump higher as its speed increases.	
	(
A kangaroo has a maximum gravitational potential energy during one jump of 770 J	
When the kangaroo lands on the ground 14% of the maximum gravitational potential etransferred to elastic potential energy in one tendon.	energy is
The tendon has an unstretched length of 35.0 cm	
When the kangaroo lands on the ground the tendon stretches to a length of 42.0 cm	
Calculate the spring constant of the tendon.	
Spring constant =	N/m

(b)

Downloaded from www.merit-minds.com

(5)

(Total 8 marks)