Practice Question Set For GCSE

Subject: Physics

Name of the Student:_ Max. Marks : 22 Marks

Paper-1 Topic: Energy (High Demand)

Time: 22 Minutes

1

1

1

1

[9]

Mark Schemes				
Q1. (a)	the measurement will be more accurate allow parallax error is reduced	1		
	because (in position B) the eye is level with (the maximum height of) the toy	1		
(b)	64 cm = 0.64 m	1		
	$0.049 = m \times 9.8 \times 0.64$ allow a correct substitution using an incorrectly / not converted height	1		
	$m = \frac{0.049}{9.8 \times 0.64}$ allow a correct rearrangement using their incorrectly / not			

been used

converted height

m = 0.0078 (kg) this mark can only be scored if the equation $E_p = m$ g h has

(c) energy from the toy is dissipated (to the surroundings / air)

allow energy from the toy is transferred to the surroundings
/ air

(but) in a closed system the total energy remains constant

Q2.

(a) (air) particles move faster **or**

	(air) particles have increased kinetic energy	1
	(so air) particles collide more frequently with the wall / chamber	
	or (so air) particles collide with more force with the wall / chamber	1
	(so) the pressure increases dependent on MP1 or MP2	1
(b)	(metals) have a high(er) thermal conductivity allow metals are good/better (thermal) conductors	1
	which allows a greater rate of (thermal) energy transfer allow (thermal) energy is transferred more quickly	1
(c)	(a low) specific heat capacity	1
(d)	 any one from: lubrication allow oil the device/wheel use hotter coffee decrease the temperature of the surroundings 	1
(e)	$1.1 \times 10^3 = \frac{\text{mass}}{1.9 \times 10^{-4}}$	1
	mass = 0.209 (kg) $allow m = 1.9 \times 10^{-4} \times 1.1 \times 10^{3}$ $the equation density = \frac{\text{mass}}{\text{volume}} \text{ must have been used to}$ $score subsequent marks$	1
	15 000 = 0.209 × 4200 × Δθ allow a correct substitution using their calculated value of mass	1
	$\Delta\theta = \frac{15000}{0.209 \times 4200}$ allow a correct re-arrangement using their value of mass and/or an incorrectly / not converted energy value	
	$\Delta\theta$ = 17(.088) allow a correct calculation using their value of mass and / or an incorrectly / not converted energy value	1
	final temperature (= 76 - 17.088) = 59 (°C)	1

1 [13]