Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: Electricity (High Demand)

r	ks : 17 Marks Time : 17 M	linute
	Describe the difference between an alternating current (a.c.) and a direct current (d.c.).	
		(2)
	The diagram shows how the electric supply cable is connected to an electric kettle. The earth wire is connected to the metal case of the kettle.	
	Heating element Earth wire Live wire	
	Neutral wire If a fault makes the metal case live, the earth wire and the fuse inside the plug protect anyon using the kettle from an electric shock.	e
	Explain how.	
		(2) marks)

Q2.

The table gives data about two types of low energy bulb.

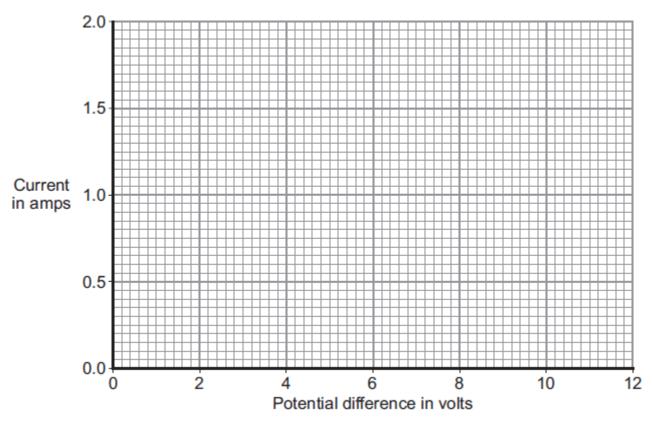
Type of bulb	Power input in watts	Efficiency	Lifetime in hours	Cost of one bulb
Compact Fluorescent Lamp (CFL)	8	20%	10 000	£3.10
Light Emitting Diode (LED)	5		50 000	£29.85

	_	mitting Diode (LED)	5		50 000	£29.85			
1)	Both	types of bulb pro	oduce the same us	seful power output.			_		
	(i)	Calculate the useful power output of the CFL.							
		Show clearly how you work out your answer.							
			Us	eful power output =			W		
	(ii)) Calculate the efficiency of the LED bulb.							
		Show clearly ho	ow you work out yo	our answer.					
									
						·			
							_		
)		ED bulbs are expensive. This is because of the large number of individual electronic LED thips needed to produce sufficient light from each bulb.							
	(i)	Use the data in a CFL.	the table to evalua	ate the cost-effective	eness of an LED	bulb compared t	to		
						. <u> </u>			
	(ii)	Scientists are de in LED bulbs.	eveloping brighter	and more efficient L	ED chips than th	ose currently use	ed		

Q3.

- (a) The resistance of a 24 W, 12 V filament lamp depends on the current flowing through the lamp. For currents up to 0.8 A, the resistance has a constant value of 2.5 Ω .
 - (i) Use the equation in the box to calculate the potential difference across the lamp when a current of 0.8 A flows through the lamp.

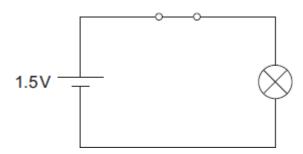
Show clearly how you work out your answer.


Potential difference = ______ V

(2)

(2)

(ii) When the potential difference across the lamp is 12 V, the current through the lamp is 2 A.


On the axes below, draw a current–potential difference graph for the filament lamp over the range of potential difference from 0 to 12 volts.

(iii) Why does the resistance of the lamp change when the current through the lamp exceeds 0.8 A?

Downloaded from www.merit-minds.com

(b) The lamp is now included in a circuit. The circuit is switched on for 2 minutes. During this time, 72 coulombs of charge pass through the lamp.

Use the equation in the box to calculate the energy transformed by the lamp while the circuit is switched on.

energy transformed = potential difference × charge

Show clearly how you work out your answer.

(2)

(Total 7 marks)