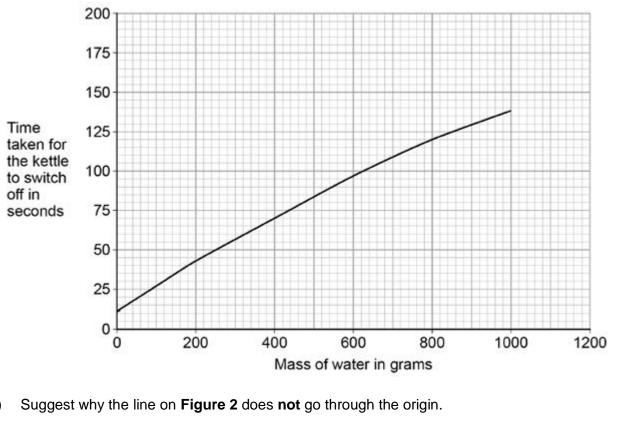
Practice Question Set For GCSE

Subject : Physics

Paper-1 Topic: Electricity (High Demand)

Name of the Student:



Max. Marks : 19 Marks	Time : 19 Minutes
Q1.	
A student investigated how the mass of water in an electric kettle affected water to reach boiling point.	I the time taken for the
The kettle switched off when the water reached boiling point.	
Figure 1 shows the kettle.	
Figure 1	
(a) The heating element of the kettle was connected to the mains supple Explain why the temperature of the heating element increased.	
(b) Give one variable that the student should have controlled.	(2)

(1)

Figure 2 shows how the mass of water in the kettle affected the time taken for the kettle to switch off.

	200	400 Mass	600 of water in	800 grams	1000	1200
Suggest why the line	e on Figure 2			72		
Suggest why the res	sults give a n	on-linear pat	ttern.			
he power of the ke	ettle was 2.6 k	ίW				
he kettle took 120	seconds to h	eat 0.80 kg	of water from	n 18 °C to 10	00 °C	
Calculate the specif	fic heat capad	city of water	using this inf	ormation.		
Give your answer to	2 significant	figures.				

	
Specific heat capacity =	J/kg °C
	(6)
	(Total 11 marks)
	(Total 11 marks)

Q2.

A 12 V filament bulb is connected to a 12 V power supply. The graph shows how the current changes after the bulb is switched on.

(a) (i) After 0.10 seconds, the bulb works at its normal brightness.

What is the current through the bulb when it is working at normal brightness?

Current = ______ A

(ii) The bulb works at normal brightness for 30 seconds before it is switched off.

Calculate the charge that flows through the bulb in the 30 seconds before it is switched off. Give the unit.

(1)

			_
		Charge = unit	(3
	(iii)	Calculate the energy transferred by the 12 V bulb when it is working at normal for 30 seconds.	
		Energy transferred = J	- (2
(b)	tem _l Expl	ween 0.02 seconds and 0.08 seconds, there is an increase in both the resistant perature of the metal filament inside the bulb. ain, in terms of the electrons and ions inside the filament, why both the temperature.	
		resistance increase.	_
			-
			_ _ (2
			(Total 8 marks