Practice Question Set For GCSE

**Subject: Physics** 

Paper-1 Topic: Electricity (High Demand)



| x. Ma | the Student: rks : 23 Marks Time : 23                                                      | Minute |
|-------|--------------------------------------------------------------------------------------------|--------|
| 21.   |                                                                                            |        |
|       | ure 1 shows how the National Grid transfers energy from a power station to some street lam | ps.    |
|       | Figure 1                                                                                   |        |
|       | Transmission cables                                                                        |        |
|       | Transformer To power station  Transformer  Street lamps                                    |        |
| (a)   | Explain how transformer <b>X</b> increases the efficiency of the National Grid.            |        |
|       |                                                                                            |        |
|       |                                                                                            |        |
|       |                                                                                            |        |
|       |                                                                                            |        |
|       |                                                                                            |        |
|       |                                                                                            | (3)    |
| (b)   | The potential difference across the primary coil in transformer Y is 400 000 V.            |        |
|       | The potential difference across the secondary coil is 11 000 V.                            |        |
|       | The current in the primary coil is 660 A.                                                  |        |
|       | Calculate the current in the secondary coil of transformer Y.                              |        |
|       | Use the Physics Equations Sheet.                                                           |        |

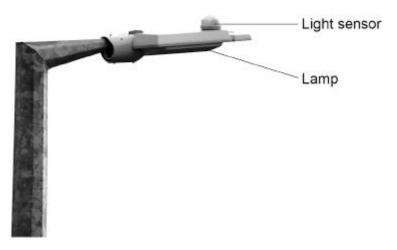
(3)

(c) Why is the current in each street lamp less than the current in the secondary coil in transformer **Y**?

Tick (✓) one box.

Current is used up in the cables between **Y** and each street lamp.

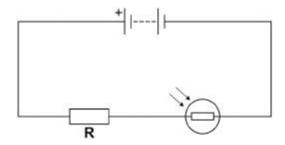
Some of the current is dissipated to the surroundings.


The cables between  ${\bf Y}$  and the street lamps have electrical resistance.

The street lamps are connected in parallel.

(1)

(d) Figure 2 shows the top of a street lamp.


Figure 2



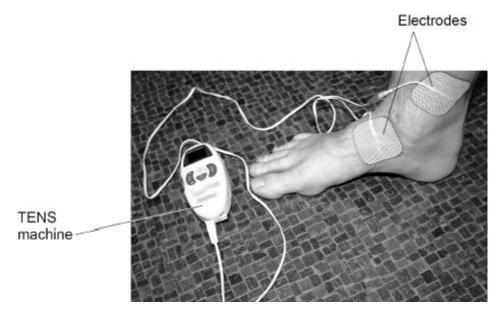
The light sensor detects if it is day or night.

Figure 3 shows part of the circuit in the light sensor.

Figure 3



Explain what happens to the potential difference across resistor  ${\bf R}$  as the light intensity decreases.


|     |                                                                                                     | _                       |
|-----|-----------------------------------------------------------------------------------------------------|-------------------------|
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     |                                                                                                     |                         |
| (e) | When the current in resistor <b>R</b> is 20 mA, the power transferred by resistor <b>R</b> is 6.0 V | ٧.                      |
|     | Calculate the resistance of resistor R.                                                             |                         |
|     | Use the Physics Equations Sheet.                                                                    |                         |
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     |                                                                                                     | _                       |
|     | Resistance =                                                                                        |                         |
|     |                                                                                                     | (4)<br>(Total 14 marks) |

## Q2.

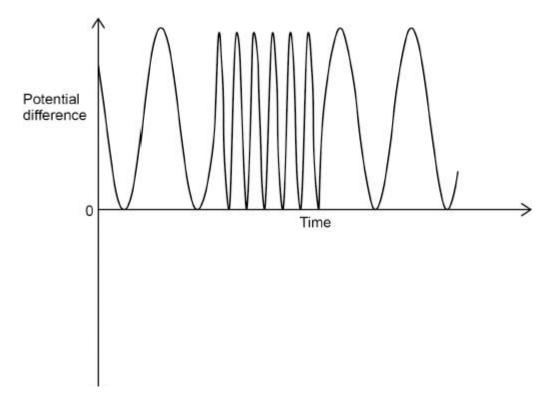
A TENS machine uses an electrical current to relieve pain.

Figure 1 shows the electrodes of a TENS machine connected across an ankle.

Figure 1



(a) The maximum power of the TENS machine is 240 mW.


The potential difference across the battery in the TENS machine is 2.5 V. Calculate the maximum current from the battery.

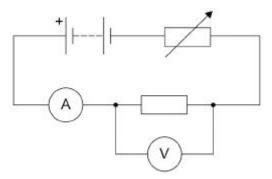
|      | <br> | <br> |      |  |  |  |  |  |  |  |
|------|------|------|------|--|--|--|--|--|--|--|
|      |      |      |      |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
| <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
| <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
| <br> |      |      |      |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
| <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
|      |      |      |      |  |  |  |  |  |  |  |
| <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |

(4)

(b) **Figure 2** is a sketch graph showing how the potential difference across the electrodes varies with time.

Figure 2

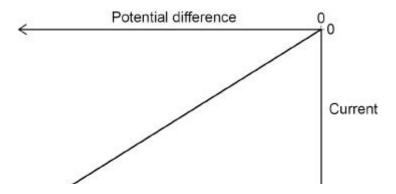



A student concluded that there was an alternating potential difference across the electrodes.

How does Figure 2 show that the student was **not** correct?

(1)

Figure 3 shows a circuit the student built using the battery from the TENS machine.


Figure 3

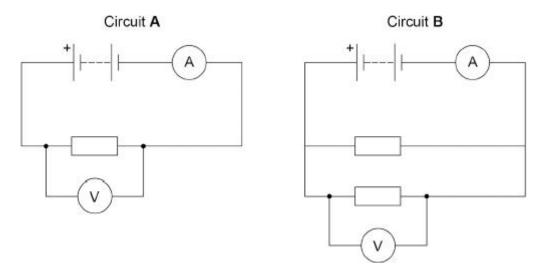


The student recorded how the current in the resistor varied with the potential difference across the resistor.

Figure 4 shows a sketch graph of the results.

Figure 4




(c) What relationship does Figure 4 show?

\_\_\_\_\_

\_\_\_\_\_\_

(d) **Figure 5** shows two more circuits that the student built using the battery from the TENS machine.

Figure 5



The resistors all have the same resistance.

Compare the readings on the voltmeter and ammeter in circuit **A** and circuit **B**.

Voltmeter \_\_\_\_\_

Ammeter \_\_\_\_\_

(3) (Total 9 marks)

(1)