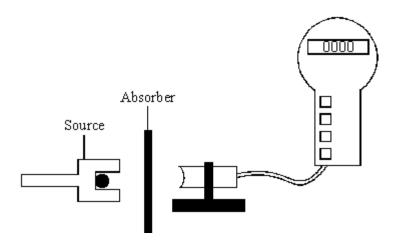
Practice Question Set For GCSE

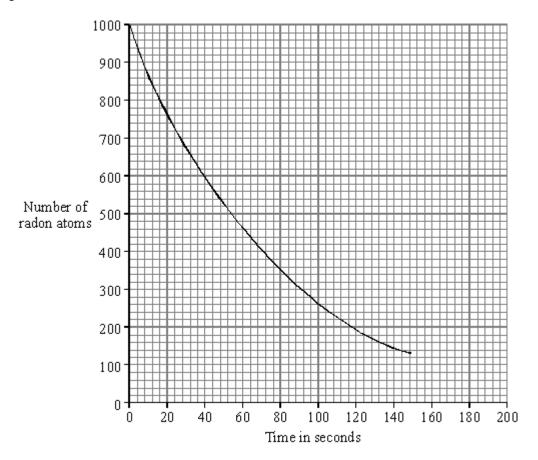
Subject: Physics



Name of the Student:_	
Max. Marks: 19 Marks	Time : 19 Minutes

Q1.

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only.


Two different types of absorber are placed one at a time between the detector and the source. For each absorber, a count is taken over ten minutes and the average number of counts per second worked out. The results are shown in the table.

Absorber used	Average counts per second
No absorber	33
Card 1 mm thick	20
Metal 3 mm thick	2

Explain how these results show that alpha and beta radiation is being given out, but games is not being given out.						
						_
						_
						_
						_
						_

Q2.

Radon is a radioactive element. The graph shows how the number of radon atoms in a sample of air changes with time.

/:\	How long did it take the	number of roden	atama in the samp	la of oir to fall from	1000 to 5002
(1)	How long did it take the	number of radon	atoms in the samp	ie of air to fail from	1 1000 to 500?

Time = _____ seconds (1)

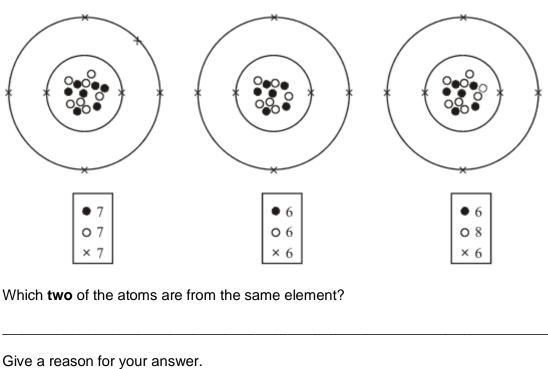
(ii) How long is the half-life of radon?

Half-life = _____ seconds

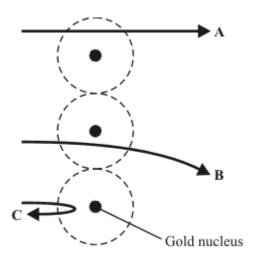
(1)

(iii) Complete this sentence by crossing out the **two** lines in the box that are wrong.

As a radioactive material gets older, it emits


less
a constant level of
more

radiation per second.


(1) (Total 3 marks)

Q3.

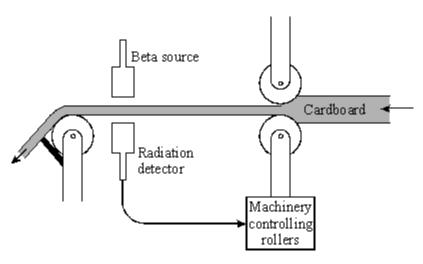
(a) The diagrams represent three atoms **X**, **Y** and **Z**.

In the early part of the 20th century some scientists investigated the paths taken by positively charged alpha particles into and out of a very thin piece of gold foil. The diagram shows the paths of three alpha particles. (b)

Explain the different paths **A**, **B** and **C** of the alpha particles.

To gain full marks in this question you should write your ideas in good English. Put them sensible order and use the correct scientific words.	into a

(2)


(3)

Q4.

(a) Two sources of radiation look identical. One source emits only alpha radiation, the other only beta radiation. Describe **one** way to find out which source emits the alpha radiation. You can assume a radiation detector and counter are available. You may wish to draw a diagram to help with your answer.>

(b) The diagram shows a beta radiation source and detector used to measure the thickness of cardboard as it is made. The table gives the detected count rate at different times.

Time	Count rate in counts/minute
09:00	120
09:30	122
10:00	119
10:30	165

		ation in count rate.		_
				-
What can y	ou say about the thi	ckness of the cardb	ooard being made at 10:30?	,
Explain the	reason for your ans	wer.		-
				-
Explain wh	ny gamma radiation i ard.	s not suitable for de	etecting changes to the thic	kness of

(Total 8 marks)