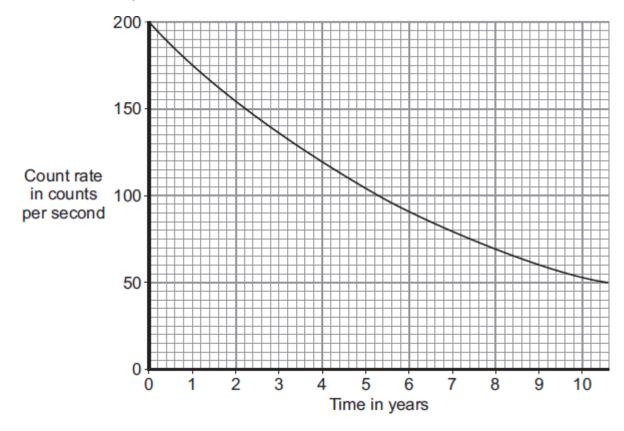
Practice Question Set For GCSE

Subject: Physics


Paper-1 Topic: Atomic Structure (Standard Demand)

Name of the Student:	
Max. Marks: 19 Marks	Time: 19 Minutes

Q1.

(a) The graph shows how the count rate from a sample containing the radioactive substance cobalt-60 changes with time.

(i)	What is the	range of the	count rate shown	on the graph?
(1)	what is the	range of the	count rate shown	on the draph?

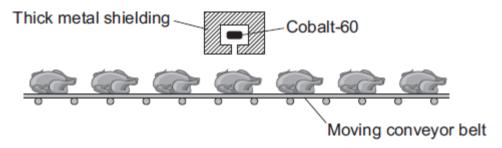
From _____ counts per second to ____ counts per second.

(1)

(ii) How many years does it take for the count rate to fall from 200 counts per second to 100 counts per second?

Time = _____ years

(1)


(1)

(iii) What is the half-life of cobalt-60?

(b) The gamma radiation emitted from a source of cobalt-60 can be used to kill the bacteria on

fresh, cooked and frozen foods. Killing the bacteria reduces the risk of food poisoning.

The diagram shows how a conveyor belt can be used to move food past a cobalt-60 source.

(i)	Which one of the following gives a way of increasing the amount of gamma radiation the
	food receives?

Put a tick (\checkmark) in the box next to your answer.

Increase the temperature of the cobalt-60 source.

Make the conveyor belt move more slowly.

Move the cobalt-60 source away from the conveyor belt.

(ii) To protect people from the harmful effects of the gamma radiation, the cobalt-60 source has thick metal shielding.

Which **one** of the following metals should be used?

Draw a ring around your answer.

aluminium copper lead

(c) A scientist has compared the vitamin content of food exposed to gamma radiation with food that has not been exposed.

The table gives the data the scientist obtained when she tested 1 kg of cooked chicken.

Vitamin	Food not exposed to gamma radiation	Food exposed to gamma radiation	
	Mass in milligrams	Mass in milligrams	
B6	1.22	1.35	
B12	21.00	28.00	

(1)

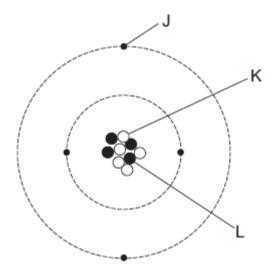
(1)

Е	3.30	2.15
Niacin	58.00	55.50
Riboflavin	2.10	2.25

Considering only this data, which $\ensuremath{\mathbf{one}}$ of the following is a correct conclusion?

Put a tick (\checkmark) in the box next to your answer.

Vitamin content is not affected by gamma radiation.


Gamma radiation completely destroys some types of vitamin.

Exposure increased the content of some types of vitamin.

(1) (Total 6 marks)

Q2.

The diagram represents an atom of beryllium.

(a) Complete the following statements by writing one of the letters, **J**, **K** or **L**, in each box.

Each letter should be used only once.

The particle with a positive charge is

The particle with the smallest mass is

Give	e the reason why all atoms have a total charge of zero.	
		-
Com	nplete the following sentence.	
Ther	e are several isotopes of beryllium. Atoms of different beryllium	
isoto	pes will have different numbers of	
Wha	at happens to the structure of an atom to change it into an ion?	-
		- (Tot
		(
The	diagram represents 3 atoms, K , L and M .	
	Key	
1	⊕ Proton ○ Neutron × Electron	- 1
/	O / O / O / O Neutron	
(i)	○ Neutron × Electron	- 1
(i)	K L M	n
(i) (ii)	Neutron ★ Electron Which two of the atoms are isotopes of the same element?	n
	Which two of the atoms are isotopes of the same element?	n
	Which two of the atoms are isotopes of the same element? and Give a reason why the two atoms that you chose in part (a)(i) are:	n

		mass number	230				
		atomic number	90				
	(i) How	many electrons are	there in an atom of	of thorium-230)?		
	(ii) How r	nany neutrons are	there in an atom o	- f thorium-230° -	?	(1	
(c)	When a tho	rium-230 nucleus d	decays, it emits rac	liation and cha	anges into radiun		•
		²³⁰ ₉₀ Th	→ ²²⁶ ₈₈ Ra +	Radiation			
	What type of	of radiation, alpha, l	beta or gamma, is	emitted by tho	orium-230?		
	Explain the	reason for your an	swer.	-			
						(3 (Total 8 marks	

The table gives some information about the radioactive isotope thorium-230.

(b)