Practice Question Set For A-Level

Subject: Physics

Paper-3 Topic : Practical Skills

Name of the Student:_____

Max. Marks: 17 Marks

Time: 17 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers	Additional guidance	Mark	
	B as equal to total momentum before = $1 \times 2 - 0.5 \times 2$	1.0	1	
	A is the answer if each trolley had the same momentum C is the momentum of the second trolley only D is the answer if the two trolleys were travelling in the same direction			

Q2.

Question Number	Acceptable Answer		Additional Guidance	
	 Use of P = VI Calculation of gradient Gradient = Δm/Δt Use of ΔE = mL and P = ΔE/Δt L = 2.30 × 10⁶ (J kg⁻¹) Comparison of calculated value for L with values in table and appropriate conclusion. 	(1) (1) (1) (1) (1)	For MP2 and MP3 credit Δm read from graph and used with corresponding Δt value For MP3 and MP4, credit $L = \frac{VI}{\text{gradient}}$ Answers in the range $(2.26-2.34) \times 10^6 \text{ J}$ kg ⁻¹	
	But not all of the energy supplied to the liquid will be used to boil the liquid Or thermal energy will be transferred to surroundings		Example of calculation: grad= $\frac{(211 - 155) \times 10^{-3} \text{ kg}}{(0 - 600) \text{ s}} = 9.33 \times 10^{-5} \text{ kg s}^{-1}$ $\therefore \frac{\Delta m}{\Delta t} = 9.33 \times 10^{-5} \text{ kg s}^{-1}$ $P = 20.5 \text{ V} \times 10.5 \text{ A} = 215 \text{ W}$ $\therefore L = \frac{215 \text{ W}}{9.33 \times 10^{-5} \text{kg s}^{-1}} = 2.30 \times 10^{6} \text{ J kg}^{-1}$	7

Question Number	Acceptable Answer		Additional Guidance	Mark
(i)	Ignoring mass of holder / spring when determining the oscillating mass	(1)		1
(ii)	Using a data logger (and light gate) would eliminate reaction time	(1)		3
	So the uncertainty in the measurement (of the time) would be reduced Not easy to measure timings for	(1) (1)		
	multiple swings/oscillations with a data logger			
(iii)	 Identify gradient as ^{4π²}/_k Determine gradient of graph k = 17.8 N m⁻¹ [17.5 → 18.5] 	(1)	Example of calculation Gradient = 2.21 s ² kg ⁻¹ $k = \frac{4\pi^2}{2.21 \text{ s}^2 \text{ kg}^{-1}}$	3
	Terms 1999	(1)	$2.21 \text{ s}^2 \text{ kg}^{-1}$ = 17.8 N m ⁻¹	

Q4.

Question Number	Acceptable Answer		Additional Guidance	Mark
	An explanation that makes reference to the following points: • Measure the distance between the two 1st/2nd order maxima Or measure the distance from the 2nd order to the central maximum Or increase the distance from the grating to the screen • This increases the distance measured on the screen (and reduce the % uncertainty) MP2 dependent upon MP1	(1) (1)		2