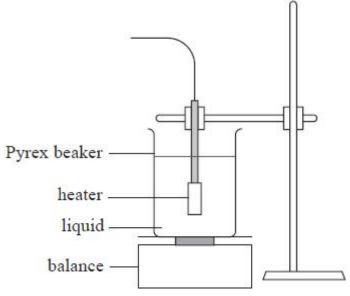
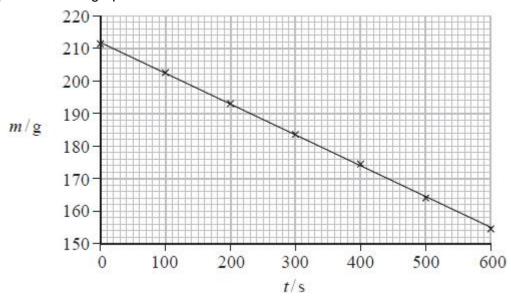
Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: 9_Thermodynamics


Name of the Student:	
Max. Marks: 19 Marks	Time : 19 Minutes
Q1.	
A wet handkerchief is dried in 56 s using a hot iron rated at 2400 W.	
Determine whether energy is transferred to the water in the handkerchief at a great the iron.	ter rate than it is transferred to
initial temperature of wet handkerchief = 18 °C	
initial mass of wet handkerchief = 35.9 g	
final mass of dry handkerchief = 18.2 g	
specific heat capacity of water = $4.19 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$	
specific latent heat of vaporisation of water = $2.26 \times 10^6 \text{ J kg}^{-1}$	
	(5)
(T	otal for question = 5 marks)
Q2.	
A gas cylinder of volume 0.052 m 3 contains oxygen gas at a temperature of 22°C a Some of the oxygen in the cylinder is used and the gas pressure falls to 1.6 x 10 5 The temperature remains constant.	nd a pressure of 2.0 × 10 ⁵ Pa. Pa.
Calculate the number of molecules removed from the cylinder	
	(3)

Number of molecules removed =
(Total for question = 3 marks)
Q3.
A car of mass 1200 kg is travelling at a speed of 25 m s ⁻¹ . During braking, 25% of the kinetic energy of the car is transferred to the brake pads.
Calculate the increase in temperature of the brake pads.
total mass of brake pads = 5.3 kg specific heat capacity of brake pads = $450 \text{ J kg}^{-1} \text{ K}^{-1}$
(4)
Increase in temperature =
(Total for question = 4 marks)


Q4.

A student determined the latent heat of vaporisation of a liquid using an electrical heater to boil the liquid in a Pyrex beaker.

The apparatus used is shown below.

The student monitored the mass of the beaker and the liquid m over the time t for which the liquid was boiling. Her results are plotted on the graph.

The student used her graph to determine a value for the latent heat of the liquid in the beaker. She concluded that the liquid was pure water.

Liquid	Latent heat of vaporisation / MJ kg ⁻¹		
Pure water	2.26		
Weak salt water solution	2.10		
Strong salt water solution	2.00		

Comment o	on the	validity	of the	e stude	ent's o	conclu	sion.

V = 20.5 V

<i>I</i> = 10.5 A		

(7)

(Total for question = 7 marks)