Practice Question Set For A-Level

Subject: Physics

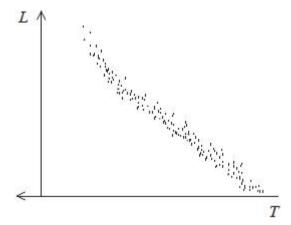
Paper-2 Topic : 9_Thermodynamics

Max. Marks : 18 Marks	Time : 18 Minutes
Q1.	
The apparatus shown can be used to determine a value for the specific latent heat of	vaporisation of water.
connection to	
power supply •	
warm water out	
heat excl	hanger
flask containing	
water	
heater	
water from condensed steam	conical flask
(a) In one experiment the current in the heater was $8.20~\mathrm{A}$, and the potential differen $230~\mathrm{V}$.	ce across the heater was
(i) Show that the power of the heater was about 2 kW.	(0)
	(2)
(ii) There was 0.655 kg of water in the flask at an initial temperature of 22.5 °C. The heater was switched on, and the water in the flask was heated to boiling point	nt.

(b) The heater was left on and water continued to boil in the flask. The water was allowed to boil for a few

Minimum time taken for water to be heated =

Calculate the minimum time taken for the water to be heated to 100.0 °C.


specific heat capacity of water = 4190 J kg⁻¹ K⁻¹

(3)

minutes. The conical flask was then placed under the heat exchanger and water was colle	cted in it.
(i) Give a reason why the water was left boiling for a few minutes before the conical fla	sk was put in place.
(ii) Water with a mass of 95.0 g was collected in a time of 125 s. Calculate the rate of energy transfer in the heat exchanger. specific latent heat of vaporisation of water = 2.26 x 10 ⁶ J kg ⁻¹	
	(3)
Rate of energy transfer in the heat exchanger =	
(iii) Discuss your answers to (a)(i) and (b)(ii).	
	(3)
(Total for qu	uestion = 12 marks)
Q2.	

A Hertzsprung-Russell (HR) diagram shows how the luminosity L depends on the surface temperature T for a group of stars.

The HR diagram below is for a young star cluster.

(i) Explain how we can tell that the young star cluster is in the early stages of its evolution.	(2)
	(2)
(ii) Explain why the most massive stars in the cluster have the greatest luminosities.	
(ii) Explain with the most massive stars in the cluster have the greatest luminosities.	(4)

(Total for question = 6 marks)