Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:

Max. Marks : 24 Marks

Time : 24 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answer		Additional Guidance	Mark
	An explanation that makes reference to the following points:			
		(1)		
	A thin wire has a large stress (for a given load)	(I)		
	A long/thin wire has a large extension (for a	(_)		
	given stress)	(1)		3
	Hence the percentage uncertainty in the length/extension is reduced			

Q2.

Question Number	Acceptable Answer		Additional Guidance	Mark	
	Calculates A	(1)	Example of calculation		
	8	(1)	$A = \frac{\pi \times (5.60 \times 10^{-4} \text{m})^2}{4} = 2.46 \times 10^{-7} \text{m}^2$		
	• Substitutes $\sigma = \frac{F}{A}$ and	(1)	$E = \frac{\frac{1}{A}}{\frac{\Delta x}{x}} = \frac{F}{\Delta x} \times \frac{x}{A}$		
	$\varepsilon = \frac{\Delta x}{x} \text{ into } E = \frac{\sigma}{\varepsilon}$		Sold and the second sec		
	• Uses $E = \frac{1}{\text{gradient}} \times \frac{x}{A}$	(1)	Grad = $\frac{\Delta x}{F}$: $E = \frac{1}{\text{gradient}} \times \frac{x}{A}$ $Grad = \frac{(3.6 - 0.75) \times 10^{-3} \text{m}}{(32.0 - 5) \text{ N}}$		
	• $E = 1.1 \times 10^{11} \text{ N m}^{-2}$	(1)	Grad = $\frac{(3.6 - 0.75) \times 10^{-1} \text{ m}}{(32.0 - 5) \text{ N}}$ $= 1.06 \times 10^{-4} \text{ m N}^{-1}$	5	
			$\therefore E = \frac{1}{1.06 \times 10^{-4} \text{ m N}^{-1}} \times \frac{2.75 \text{ m}}{2.46 \times 10^{-7} \text{m}^2}$		
			$\therefore E = 1.057 \times 10^{11} \text{ N m}^{-2}$		

Question Number Acceptable Answer		Additional Guidance	Mark	
(i)	Changes (in recorded length) due to the support bending are minimised Or changes (in recorded length) due to temperature are minimised Or it allows use of a vernier scale (1) (to determine extension)		1	
(ii)	To keep the reference wire taut/straight Or to keep the reference wire under tension	I	1	

Q4.

Question Number Acceptable Answer			Additional Guidance	Mark
(i)	 (For linear section of graph) area under graph = \$\frac{1}{2}\$ stress × strain Use of stress = F/A and strain = \Delta x/x to show that area = \$\frac{1}{2}\$ × \$\frac{F}{A}\$ × \$\frac{\Delta x}{x}\$ = \$\frac{F_{av}\Delta x}{V}\$ = \$\frac{F}{V}\$ 	(1)	Candidates who only use the graph to show that the area has units $J m^{-3}$ can score a maximum 1 mark Accept F_{av} for $\frac{1}{2}F$	2

(ii)	 Area under graph up to 0.075 calculated 	(1)	Example of calculation: When strain is 0.075	
	 Energy per unit volume = 7.1×10⁵ J m⁻³ 	(1)	Area = $\frac{1}{2} \times 19 \times 10^6 \text{ Pa} \times 0.075 = 7.13 \times 10^5 \text{ J m}^{-3}$	
	 This is much less than the value given in (a), and so belt does not absorb all the KE. 	(1)		
	OR			
	• Graph used to determine stress when strain is 0.075 and $\sigma = \frac{F}{A}$ used to calculate force	(1)		3
	• $\epsilon = \frac{\Delta x}{x}$ used to calculate	18151		
	extension and $W = \frac{1}{2}F\Delta x$ used to calculate energy	(1)		
	 Statement that this energy is much less than the value in (a), and so belt does not absorb all the kinetic energy 	(1)		

Question Number	Answer					Mark		
(a) (i)	Each row of the table contains a suitable method. One mark for each column, do not allow a mix and match of methods (rows)							
	Distance measured with the metre rule	<u>Corresponding</u> time	Correct use of measurements referred to in columns 1 and 2	To calculate g use: (formula/expression seen)	(1)			
	Record the position on the rule for each frame	Time between frames	Plot distance against t ²	g = 2 x gradient				
	Measure distance between (successive) frames against a metre rule	Time between frames	Calculate the speed each frame using distance /time and plot against time	g = gradient				
	Use metre rule to measure: (total) distance ball falls through Or height from which the ball was dropped (e.g. 1 m)	Number of frames × time between frame Or total time of journey recorded/found	Use of: $s = ut + \frac{1}{2}at^2$ Or $s = \frac{1}{2}at^2$ Or $s = \frac{1}{2}gt^2$	$g = 2s/t^2$ Or Re-arrange $s = \frac{1}{2} gt^2$ substituting in s and t to find g.				
	Measure distance between frames (at beginning and) end of drop using the rule	Time between frames known and count frames Or if stated $u = 0$ then time for ball to fall and the time between frames.	Use speed = Δs/Δt to find their final velocity using correct time interval [may take u as 0]	g = (v-u)/t Or $a = (v-u)/t$				
	Record the position on the rule each frame	Time between frames	Calculate the speed each frame using d/t and plot a graph of v ² against s.	Gradient/2 = acceleration				

(a) (ii)	they include a shor Or ball released be Or the ruler is not Or the idea that the Or the idea that the (Parallax alone is in	e camera has not been calibrated correctly i.e. runs too fast/slow ere is a parallax error from camera to object	(1)	1	
(b)	1.4000000000000000000000000000000000000	amlined shape / smooth surface / shiny	(1)		
	Small surface area—minimise drag Dense — weight > upthrust Or weight > drag Streamlined /aerodynamic—minimise drag Or ensure laminar flow Smooth surface — minimise drag Or ensure laminar flow Shiny — easy to see on the recording Small — easier to read scale (precisely) (Sphere is not acceptable for a property but statement such as 'sphere to minimise drag' can score 2 nd mark)				
(c)	Advantage Explanation (to score both marks the explanation must be linked to the advantage. Accept reverse arguments. Human error is not sufficient for reaction time).				
	Advantage	Explanation			
	No reaction time	Reduces uncertainties Or (time recorded) more precise/accurate			
	Can be paused /stopped to take readings.	Measurements taken at exact times Or positions against rule recorded more accurately. Or velocities can be calculated frame by frame (more readings			
	Allows repeated playback Or rewinding	Allows values to be checked/confirmed Or values obtained are more reliable			