Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:	

Max. Marks: 23 Marks

Time: 23 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
(a)(i)	• σ= 54-56 (MPa)	(1)	do not penalise powers of 10	
	• Use of $\sigma = \frac{F}{A}$ with their value of σ	(1)	Example of calculation	
	• $F = 64.5 \text{ N} - 67.5 \text{ N}$	(1)	$F = 56 \times 10^6 \text{Nm}^{-2} \times 1.2 \times 10^{-6} \text{m}^2$ F = 67 N	3

Question Number	Acceptable answers		Additional guidance	Mark
(a)(ii)	• Use of $\varepsilon = \frac{\Delta x}{x}$	(1)	Example of calculation	
	• Extension = 1.0 cm	(1)	$0.04 = \Delta x / 25 \text{ cm}$ $\Delta x = 0.04 \times 25 \text{ cm} = 1.0 \text{ cm}$	
			Allow 1 cm, 0.01 m, 10 mm	2

Question Number	Acceptable answers		Additional guidance	Mark
(b)	An answer that makes reference to the following:		It should be clear from the student's answer that shrilk is the better material	
	Shrilk has less strain for same stress Or Shrilk is stiffer	(1)	Ignore references to Young modulus, renewable, biodegradable, cost	
	Shrilk breaks at a higher stress (compared to polythene) Or Shrilk can withstand a greater stress/force/load/weight Or Shrilk is stronger	(1)	Accept converse arguments for polythene	
	Shrilk doesn't stretch as much (for a given force)	(1)		
				3

Question Number	Acceptable Answers	Additional guidance	Mark
(i)	 Recognises resultant force on raindrop = 0 Or Uses W=F(+U) Use of F = 6πηrυ Use of U = weight of air displaced Or U = 4/3 ρaπr³g Or U = ρaVg and V = 4/3 πr³ Or U = mg and ρ = m/v and V = 4/3 πr³ Or U = mg and ρ = m/v and V = 4/3 πr³ Or states upthrust is negligible 1.7 m s⁻¹ 	Example of Calculation (1) $W=F+U$ (1) $F = 6\pi \times 1.3 \times 10^{-5} \text{Nm}^{-2} \times 1.5$ $v = (2.45 \times 10^{-8} v) \text{ (N)}$ $U = 1.225 \text{ kg m}^{-3} \times \frac{4}{3}\pi (0.000 \times 9.81 \text{m s}^{-2})$ $= 4.9 \times 10^{-11} \text{ (N)}$ $v = \frac{4.1 \times 10^{-8} \text{ N} - 4.9 \times 10^{-11} \text{ N}}{2.45 \times 10^{-8}} = 10$ (1)	01 m) ³
(ii)	turbulent flow (so) Stokes law does not apply	1)	2

Q3.

Question Number	Acceptable Answer	Additional Guidance	Mark
(a)	As graphene is only 1 atom thick so the CSA/thickness is far smaller than for a sample of steel Or most applications need a thickness greater than one atom Or if more than one layer of graphene is used it will be weaker or the bonds between the layers will not be strong Or Graphene is difficult to manufacture because it has only one atomic layer Although graphene has a greater breaking stress it will break at a lower force	MP1: accept graphene can only be 1 atom thick but steel can be any thickness (MP1, treat references to cost/energy as neutral)	

Question Number	Acceptable Answer		Additional Guidance	Mark
(b)	Use of depth of graphite = 100 × diameter of 1 carbon atom	(1)	Example of calculation Depth of graphite = $100 \times 1.4 \times 10^{-10}$ m = 1.4×10^{-8} m	
	 Use of cross-sectional area = depth × (0.5 × 10⁻³ m) 	(1)	$CSA = 1.4 \times 10^{-8} \text{ m} \times 0.50 \times 10^{-3} \text{ m} = 7.0 \times 10^{-12} \text{ m}^2$	
	• Use of $\rho = \frac{RA}{l}$	(1)	$\rho = \frac{1.029 \times 10^{6} \Omega \times 7.0 \times 10^{-12} \text{m}^{2}}{0.200 \text{ m}} =$	
	• $\rho = 3.6 \times 10^{-5} \Omega \text{m} \text{Or} 36 \mu\Omega \text{m}$		$3.6 \times 10^{-5} \Omega \mathrm{m}$	4

Question Number	Acceptable Answer		Additional Guidance	Mark
(c)	Max 3	·		
	 Silicon will only release a (photo) 		MP1: accept single frequency	
	electron for a	(1)	for limited range	
	limited range of			
	frequencies/wavelengths			
	100	(1)		
	Silicon releases only one (photo)			
	electron per incident photon	(1)		
	Greater current (for the same			
	illumination) in graphene	(1)		
	Graphene (cells are) more efficient			
	Or graphene cells could be smaller /			
	cheaper / thinner			3