Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:	
----------------------	--

Max. Marks : 21 Marks Time : 21 Minutes

Mark Schemes

Q1.

Question Number	Acceptab	le answers	Additional guidance		Mark
*	This question assesses a student's ability to show a coherent and logically structured answer with		The following table shows how the marks should be awarded for structure and lines of reasoning		6
	linkages and fully-sustai Marks are awarded for in how the answer is struct	dicative content and for		Number of marks awarded for structure and lines of reasoning	
	reasoning. The following table show be awarded for structure.		Answer shows a coherent and logical structure with	2	
	Number of indicative points seen in answer	Number of marks awarded for indicative points	linkage and fully sustained lines of reasoning		
	6 5-4	3	demonstrated throughout		
	3-2	2	Answer is partially structured	1	
	1 0	0	with some linkages and		
	Indicative content IC1 (Initially) there is		Innes of reasoning Answer has no linkage between points and is unstructured	0	
	resultant force on the b Or (Initially) weight is gre	5	Linkage marks		
	IC2 (so) the ball bearing accelerates downwards		Number of indicative content points awarded	Possible linkage marks	
	IC3 The (viscous) dra	g force increases with	0, 1, 2 3, 4	0	
	speed	g force mereases with	5, 6	2	
	IC4 The (viscous) dra given velocity) is grea viscous fluid				
	IC5 Eventually results so ball reaches termina				
	Or When weight = upthru a constant speed	st + drag the ball falls at			
	IC6 In the higher visco velocity is lower.	osity fluid the terminal			

Question Number	Acceptable answers		Additional guidance	Mark
	X is brittle at greater stresses/forces	(1)		
	Y will deform plastically at	(1)		
	greater stresses/forces	(1)		
	The Young modulus for X is greater than Y	(1)	Accept converse for MP3 and MP4	4
	 A screen made from material Y would be more suitable as it is more flexible 		MP4: accept less stiff for flexible.	

(a)(i)	Use of density = $\frac{\text{mass}}{\text{volume}}$ Or see upthrust = ρVg	(1)	
	Use of upthrust = mass of water displaced $x g$	(1)	
	Upthrust = 0.026 N	(1)	
	Idea that the effect of the upthrust is more significant for the nylon than for the copper (e.g. a quantitative comparison made between the 2 net forces Or a sensible comment linking the upthrust to the 2 weights)	(1)	
	Or		
	Use of density = $\frac{\text{mass}}{\text{volume}}$	(1)	
	Use of weight = mass $\times g$	(1)	
	Density $_{copper} = 8625 \text{ kg m}^{-3} \text{ Or density}_{nylon} = 1098 \text{ kg m}^{-3}$	(1)	
	Comparison of the densities of both copper and nylon to that of sea water	(1)	4
	e.g. the density of nylon is only just greater than that of sea water so it almost floats whilst the density of copper is much greater than that of sea water so it will fall rapidly		
	Example of calculations Mass of water displaced by either line $= 1030 \text{ kg m}^{-3} \times 1.30 \times 10^{-7} \text{ m}^{2} \times 20.0 \text{ m}$		
	= 2.68×10^{-3} kg Upthrust = 2.68×10^{-3} kg × 9.81 N kg ⁻¹ = 0.0263 N Net downwards force on Copper = 0.220 N – 0.0263 N = 0.194 N		
	Net downwards force on nylon = $0.0280 \text{ N} - 0.0263 \text{ N} = 0.00170 \text{ N}$		

(a)(ii)	Use of either stress = $\frac{load}{cross sectional area}$ Or strain = $\frac{extension}{original length}$	(1)	
	Or see $E = \frac{Fx}{A \triangle x}$		
	Use of Young modulus = $\frac{\text{stress}}{\text{strain}}$ Or use of $E = \frac{Fx}{A \triangle x}$	(1)	
	Extension = 0.0775 m	(1)	3
	$\frac{\text{Example of calculation}}{\text{Stress} = \frac{65.0 \text{ N}}{1.30 \times 10^{-7} \text{ m}^2}} = 5.00 \times 10^8 \text{ Pa Or strain} = \frac{\text{extension}}{20.0 \text{ m}}$		
	$129 \times 10^9 \text{ Pa} = 5.00 \times 10^8 \text{ Pa} \div \frac{\text{extension}}{20.0 \text{ m}}$		
	Extension = 0.0775 m		
(b)(i)	Loading graph to include elastic(straight) line and some plastic(curved) section	(1)	
	Unloading line showing a permanent extension Unloading line to be parallel to the loading line	(1) (1)	3
	Ferce Description Description		
(b)(ii)	Line becomes more sensitive Or all work done is used to reel in fish Or no/less work done on extending the line Or all force supplied pulls in fish Or less force required (to reel in fish) Or less (elastic /plastic)	18/91	Sec
	stretch Or elastic limit increases	(1)	1
() 	Total for question		11