Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:

Max. Marks : 21 Marks

Time : 21 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	EITHER • Calculation of mean t (1) • Use of $s = ut$ (1) • Use of $v = \frac{2r^2g(\rho B - \rho c)}{2r^2}$	Example of calculation $t = \frac{(9.6 + 9.9 + 9.6) \text{ s}}{3} = 9.7 \text{ s}$ $v = \frac{0.225 \text{ m}}{9.7 \text{ s}} = 0.0232 \text{ m s}^{-1}$ $\eta = \frac{2 \times (4.25 \times 10^{-3} \text{ m})^2 \times 9.81 \text{ m s}^{-2} \times (7750 - 1330)}{9 \times 0.0232 \text{ m s}^{-1}}$)) kg m=
	 Use of v =	 η = 10.9 Pa s, so cocoa content is 30% (from graph) Cocoa content is 30% so not consistent Or viscosity value is 4.5 Pa s so not consistent 	
	 Conclusion consistent with their graph value (1) OR Viscosity at 35% = 4.5 (Pa s) Use of v = (2r²g(ρβ - ρc))/9 η (1) 	Time taken would be 4.0 s so not consistent with mean time	5

• Use of $s = ut$ to calculate time to fall T_{fall}	
(1)	
Calculation of mean t	
(1)	
Conclusion consistent with calculated value of T _{fall}	
(1)	

(ii)	An explanation that makes reference to the following points:		If no other marks scored then allow MAX 1 for reference	
	EITHER		to ball not falling at terminal velocity	
	The temperature may not have been constant	(1) (1)		
	 So the viscosity value would have varied 			
	OR			
	There may have been reaction time error On These ways have been possible.	(1) (1) (1) (1)		
	Or There may have been parallax error in reading the distance fallen by the ball		Allow a reference to eddies Or turbulent flow	2
	 So the velocity of the ball may have been inaccurate 			_
	OR			
	There may have been an extra drag force			
	So terminal velocity would have been reduced			

Question Number	Acceptable answers		Additional guidance	Mark
	• Use of $pV = NkT$	(1)	Example of calculation $p_1 V_1 = NkT_1$	
	Conversion of T in K	(1)	$p_1 V_1 / T_1 = NkT_1 = p_2 V_2 / T_2$ $V_1 / 293 \text{ K} = 2800 \text{ m}^3 / 393 \text{ K}$	
	 Use of ρ = m/V to determine mass of air in the balloon 	(1) (1)	Volume of gas before heating, $V_1 = 2087 \text{ m}^3$ mass of air in balloon = 1.2 kg m ⁻³ × 2087 m ³	
	 Calculation of total mass = mass of air at 120 °C + passengers + balloon 	0.000	= 2505 kg Total mass with 5 passengers = (2505 + 340 + 380) kg = 3225 kg W = 3225 kg × 9.81 N kg ⁻¹ = 31 637 N	
	• Use of $W = mg$	(1)	31 600 N < 33 000 N	6
2	 W = 31 600 N, which is less than 33 000 N, so the balloon can take off 			

Q3.

Question Number	Acceptable Answer	Additional Guidance	
(i)	An explanation that makes reference to the following points: Either Take readings in different positions/orientations along the wire (and calculate a mean)	Accept: use ratchet to close up micrometer to avoid squashing the wire	
	As wire diameter may not be uniform (1) (1) (1)	MP2 accept cross section for diameter MP2: accept to reduce the effect of random error	
	Check (and correct for) for zero error Zero error reduces the accuracy of the measurement Or Zero error moves the value away from the true value	MP2 accept systematic error not changed by repeat measurements	2