Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: 13_Oscillations

Name of the Student:

Max. Marks : 22 Marks Time : 22 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answer		Additional Guidance	Mark
	 Max 4 from 2 out of 3 pairs The student should let the pendulum swing back and to before starting the stopwatch. The first swing may be affected by the student pushing the bob as they release it The student should use a (fiducial) marker at O Easier to determine when it passes O Time more oscillations A longer time reduces (%) uncertainty (in T) 	(1) (1) (1) (1) (1)	For each pair, the second marking point is dependent on the first marking point MP4: Accept the pendulum travelling fastest when it passes O	4

Question Number	Acceptable Answer		Additional Guidance	Mark
(i)	An explanation that makes reference to the following points:			
	 Time n oscillations and divide by n, where n is a large number 	(1)	Where $n \ge 5$	
	 Increasing the time (measured) reduces the uncertainty (in T) 	(1)		
	Repeat timing and calculate a mean	(1)		
	Use a (fiducial) marker to indicate the reference position	(1)	For equilibrium allow	
	Use equilibrium position as reference position	(1)	centre/undisplaced	6
	The trolley is moving fastest at this point so the uncertainty in starting/stopping the stopwatch is least	(1)		
(ii)	 Use ω = 2π/T (to calculate a value for ω) Or use ω = 2πf with f = 1/T 	(1)		
	Measure the maximum displacement of the trolley from the equilibrium position (with the metre rule)	(1)	For equilibrium allow centre/undisplaced [accept initial displacement for maximum displacement]	3
	 Use v_{max} = ω A (to calculate a value for the maximum velocity of the trolley) 	(1)		

Question Number			Mark
(a)	Use of $F = \frac{G m_1 m_2}{r^2}$ $G = 6.6 \times 10^{-11} \text{ (N m}^2 \text{ kg}^{-2}\text{)}$ [must see $6.6 \times 10^{-11} \text{ when rounded to 2 sf]}$	(1)	2
	Example of calculation $G = \frac{1.5 \times 10^{-7} \text{ N} \times (0.23 \text{ m})^2}{160 \text{ kg} \times 0.75 \text{ kg}} = 6.61 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$		
(b)(i)	Read (peak) times from graph for at least 3 cycles $T = 6.4 \min (\pm 0.2 \min) \qquad [T = (380 \pm 12) \text{ s}]$	(1) (1)	2
	[max 1 mark if correct answer shown without working] Example of calculation $T = \frac{(28.0 - 2.5)\text{min}}{4} = 6.38\text{min}$		
(b)(ii)	Air resistance acts on the sphere [accept frictional forces Or (viscous) drag (1) for air resistance]		
	Energy is removed from the oscillation/system Or the oscillation/system is damped [For mp 2 do not credit 'energy is lost' but accept 'energy is dissipated'; answer must indicate idea of transfer of energy]	(1)	2
(b)(iii)	Evidence of values of at least 3 consecutive peaks read from graph [accept values of 3 points separated by equal time intervals]		
	Attempt to obtain amplitudes, by subtracting 0.75 Calculation of two values of A _{n+1} /A _n with corresponding conclusion		3
	Or Calculation of two values of difference of ln A _{n+1} and ln A _n with corresponding conclusion Or		
	Use peaks of graph to sketch curve Use curve to determine "half-life" [accept other ratio] Calculation of two values of "half-life" with corresponding conclusion	(1) (1) (1)	
	Example of calculation $A_0 = 1.45 - 0.75 = 0.7$, $A_1 = 0.75 - 0.25 = 0.5$, $A_2 = 1.1 - 0.75 = 0.35$, $A_4 = 0.75 - 0.5 = 0.25$		

$\frac{A_0}{A_1} = \frac{0.35}{0.50} = 0.70$	
$\frac{A_3}{A_2} = \frac{0.25}{0.35} = 0.71$	
Total for question	9