Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: 13_Oscillations

Name of the Student:		

Max. Marks : 20 Marks Time : 20 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers	Additional guidance	Mark
	An explanation that makes reference to:		
	Either		
	The oscillating frame causes the lead spheres to deform plastically (1)		
	And this removes energy from the oscillating frame (1)		
	 So the amplitude of oscillations decrease with time as shown by the graph (1) 		
	OR		
	Spheres collide/vibrate (1)		
	Hence energy dissipated (1)		
	 So the amplitude of oscillations decrease with time as shown by the graph (1) 		3

Q2.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	 Use of T = 2π√(1/g) Time to reach maximum height = T/4 (1) Time to reach maximum height = 0.56 (s) (1) 	Example of calculation $T = 2\pi \sqrt{\frac{1.25 \text{ m}}{9.81 \text{ m s}^{-2}}} = 2.24 \text{ s}$ $t = \frac{T}{4} = \frac{2.24 \text{ s}}{4} = 0.56 \text{ s}$	3
(ii)	• Use of $T = 2\pi \sqrt{\frac{m}{k}} \text{(1)}$ • $m = 0.015 \text{ kg (ecf from (b)(i))}$ (1) [show that value gives 0.018 kg]	Example of calculation $2.24 \text{ s} = 2\pi \sqrt{\frac{m}{0.12 \text{ N m}^{-1}}}$ $\therefore m = (\frac{2.24 \text{ s}}{2\pi})^2 \times 0.12 \text{ N m}^{-1} = 0.0153 \text{ kg}$	2

Q3.

Question Number	Acceptable Answer	Additional Guidance	Mark
	An explanation that makes reference to the following points: • The (pushing) frequency must match the natural frequency (1) • The time period of oscillation increases, as $T = 2\pi \sqrt{\frac{m}{k}}$ • So the frequency of pushing must decrease (1)		3
	[dependent upon MP2]		

Question Number	Answer		Mark
(i)	Identification of weight and force from cone, F_c , as the two forces acting on the sand	(1)	
	Weight $-F_c = m\omega^2 x$	(1)	
	So as x increases, F_c decreases, sand loses contact with cone when $F_c = 0$	(1)	3
(ii)	Resultant force equated to weight Or acceleration equated to g	(1)	
	Use of $\omega = 2\pi f$	(1)	
	f = 32 Hz	(1)	3
	Example of calculation: $mg = m\omega^2 x_0$		
	$mg = m\omega x_0$ $\omega = \sqrt{\frac{g}{x_0}} = \sqrt{\frac{9.81 \text{m s}^{-2}}{0.25 \times 10^{-3} \text{ m}}} = 198 \text{ rad s}^{-1}$		
	$f = \frac{\omega}{2\pi} = \frac{198}{2\pi} = 31.5 \text{Hz}$		