Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 8_Nuclear and Particle Physics

Name of the Student:

Max. Marks: 25 Marks

Time: 25 Minutes

Mark Schemes

Q1.

Question Number	Answer		Mark
(a)(i)	Straight through, zero deflection, direction fired in. (Do not accept 'through' or 'directly behind' on its own)	(1)	1
(a)(ii)	(Atom consists) mainly/mostly of empty space Or Volume of atom very much greater than volume of nucleus. (do not credit if part of a list)	(1)	1
(b)	Most of the mass is in the nucleus/centre [it is not enough to say that the nucleus is dense/concentrated. Looking for idea that nearly all of the atom's mass is in the nucleus]	(1)	
	Nucleus/centre is <u>charged</u> [ignore references to the charge being positive. Just saying the nucleus is positive does not get the mark.]	(1)	2
(c)(i) E	Electrostatic/electromagnetic/electric/coulomb	(1)	1
		(1) (1)	2
(c)(iii)	Deflection starts earlier Final deflection is greater (paths should diverge)	(1) (1)	2
	Total for question		9

Question Number	Acceptable Answers			Additional guidance	Mark
а	• • • •	fundamental – quarks and leptons Baryons made of 3 q Mesons made of quark and antiquark 6 quark Or 6 leptons Each particle has an antiparticle	(1) (1) (1) (1)	MP2 and 3 could be given for a named particle and its quark composition Can be inferred if either set named	5

Question Number	Acceptable Answers			Additional guidance	Mark
b	• Conve	$\Delta E = \Delta mc^2$ rsion of J to eV = 120 GeV/c ²	(1) (1) (1)	Example of calculation: $E = 2.2 \times 10^{-25} \text{kg} \times (3.0 \times 10^8)^2 (\text{ms}^{-1})^2$ $E = 1.98 \times 10^{-8} \text{J}$ $E = 1.98 \times 10^{-8} \text{J} \div 1.6 \times 10^{-19} \text{JeV}^{-1}$ $E = 124 \times 10^9 \text{ eV}$	3

Question Number	Acceptable Answers			Additional guidance	
c(i)	•	Energy (of protons) converted to mass (of Higgs) Or Energy is required to overcome electrostatic repulsion between protons	(1)	Alternative based on numerical values: Observation that Higgs mass is 120 GeV/c ² This requires an energy of at least 120 GeV Each beam of protons would need an energy of at least 60 GeV	3
	•	Reference to $E = mc^2$ (can be written in any form)	(1)		
	•	Because c^2 is very large (E must be large) Or Higgs particle is massive so needs a lot of energy to create it	(1)		
c(ii)	•	Use of circumference = $2\pi r$	(1)	Example of calculation: $r = 27000 \div 2\pi$ r = 4300 m	3
	•	Use of $p = Bqr$	(1)	$p = 8.3T \times 1.6 \times 10^{-19} \text{C} \times 4300\text{m}$ $p = 5.7 \times 10^{-15} \text{Ns}$	
	•	$p = 5.7 \times 10^{-15} \mathrm{Ns}$	(1)		-
ciii	0		(1)	zero	1

Question Number	Acceptable Answers			Additional guidance	Mark
d	•	High speeds Or relativistic Mass (of proton) increases Or this equation is only valid at non-relativistic speeds	(1)	Alt: speeds close to speed of light	2