Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 8_ Nuclear and Particle Physics

Name of the Student:_____

Max. Marks : 20 Marks Time : 20 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers	Additional guidance	Mark
	 correct values of A and Z for a and β 5 a 	Example of calculation: $^{226}_{88}$ Ra \rightarrow $^{206}_{82}$ Pb + x $^{4}_{2}$ a + y $^{0}_{-1}$ β $^{226}_{-206}$ = 4 x x = 5 $^{88}_{-82}$ - $^{(5 \times 2)}$ = $^{-}$ y	
2	• 4 β	y = 4 $^{226}_{88}$ Ra $\rightarrow ^{206}_{82}$ Pb + 5 $^{4}_{2}$ a + 4 $^{0}_{-1}$ β	(3)

Q2.

Question Number	Acceptable answers	Additional guidance	Mark
change of 80°C (1) • $c = 3.94 \times 10^3 \text{ J kg}^{-1} \text{ C}^{-1}$ (1)		Example of calculation: Temperature rise = $(101 - 21)^{\circ}$ C $175000 \text{ J} = 0.444 \text{ kg} \times c \times (101 - 21)$ C $c = 3.94 \times 10^{3} \text{ J kg}^{-1} \text{ C}^{-1}$	2

Q3.

Question Number	Acceptable Answer		Additional guidance	Mark
(i)	An explanation that makes reference to the following points:			
	energy conserved	(1)		
	 so energy needed over and above rest energy of proton in order to provide the mass of the π⁰ particle 	(1)		
	, 5, 5, 5, 7, Fai. 3, 50			(2)

Question Number	Acceptable Answer		Additional guidance	Mark
(ii)	 calculates rest energy of π⁰ 	(1)	Example of calculation:	
	• 134 GeV	(1)	$E_k = \frac{938 \text{ GeV}}{7} = 134 \text{ GeV}$	(2)

Q4.

Question Number	Acceptable answers		Additional guidance	Mark
	 attempt to determine mass difference between radium and radon-plus-alpha conversion to kg Use of ΔE = c²Δm Use of 1.6 × 10⁻¹⁹ factor Answer = 4.87 (MeV) 	(1) (1) (1) (1)	$\Delta m = 225.97713u - (221.97040u + 4.00151 u)$ = $5.22 \times 10^{-3} u = 5.22 \times 10^{-3} \times 1.66 \times 10^{-27}$ kg = 8.67×10^{-30} kg $\Delta E = c^2 \Delta m = (3 \times 10^8 \text{ m})^2 \times 8.67 \times 10^{-30}$ kg = $7.80 \times 10^{-13} \text{ J}$ $\Delta E \text{ in MeV} = 7.80 \times 10^{-13}$ $J \div 1.6 \times 10^{-19} \text{ C}$ = 4.87 MeV	5

Question Number	Acceptable answers	Additional guidance				Mark
	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of	IC points	IC mark	Max linkage mark available	Max final mark	6
	reasoning.	6	4	2	6	
	The following table shows how the marks should be awarded for indicative content.	5	3	2	5	
	Indicative content:	4	3	1	4	
	District of street decay and the second streets	3	2	1	3	
	IC1: set of (metal drift) tubes (in a line)	2	2	0	2	
		1	1	0	1	
	IC2: electrons accelerated by electric field/potential difference	0	0	0	0	
	IC3: acceleration takes place in the gaps between tubes		1 and 4 ma n diagram	y be awarde	d with	
	IC4: adjacent tubes connected to opposite terminals of a power supply or opposite charge/polarity	IC6 accept reference to distance between centres/ends of tubes must increase to give a fixed alternating frequency				Ø
	IC5: power supply/p.d./electric field is alternating (so that as electron emerges from one tube the next tube is positive)					8
	IC6: time spent in each tube must be the same so as the electrons travel faster the tubes must					
	be longer / gaps between get longer	-				8