Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 7_ Magnetic Field

Name of the Student:

Max. Marks: 18 Marks

Time: 18 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	• $V_{\text{rms}} = 3.5 \text{ V}$	(1)	Example of calculation $V_{\text{rms}} = \frac{5}{\sqrt{2}} = 3.54 \text{ V}$	1
(ii)	An explanation that makes reference to the following points: • "5" is the peak value (of pd)	(1)	Accept max for peak	3
	• Use of $T = 1/f$ Or $\omega = 2\pi/T$ Or $\omega = 2\pi f$	(1)	Alternative MP2: recognises that one period/cycle of the	
	• Uses $\omega = 100\pi$ to show that the time period should be 0.02 s Or Uses $f = 50$ to show that $\sin 2\pi f t$ is $\sin 100\pi t$ Or Uses $T = 0.02$ to show that $100\pi 0.02 = 2\pi$	(1)	sine wave is an angle of 2π	

Q2.

Question Number	Answer	Additional guidance	Mark
(a)(i)	thermionic emission		(1)

Question Number	Acceptable Answer	Additional guidance	Mark
(a)(ii)	• equate $\frac{1}{2}mv^2$ and VQ	Example of calculation: $E = 1500 \text{ V} \times 1.6 \times 10^{-19} \text{ C} = 2.4 \times 10^{-16} \text{ J}$	
	• $v = 2.3 \times 10^7 \text{ m s}^{-1}$	1) $v = \sqrt{\frac{2 \times 2.4 \times 10^{-16} \mathrm{J}}{9.11 \times 10^{-81} \mathrm{kg}}} = 2.3 \times 10^7 \mathrm{m s^{-1}}$	2000
			(2)

Question Number	Acceptable Answer		Additional guidance	Mark
(b)(i)	• use of $F = EQ$ and $E = \frac{v}{d}$ OR see $F = \frac{vQ}{d}$	(1)		
	• equate $F = ma$ and $F = EQ$	(1)		(2)

Question Number	Acceptable Answer	Additional guidance	Mark
	• use of speed = (1) distance/time • $t = 8.7 \times 10^{-10}$ (s) (1) • use of $a = \frac{vq}{dm}$ (1) • use of $s = ut + \frac{1}{2}at^2$ (1) with $u = 0$ and vertical acceleration to find s	$t = \frac{0.02 \text{ m}}{2.3 \times 10^{7} \text{m s}^{-1}} = 8.7 \times 10^{-10} \text{ s}$ $s = \frac{1}{2} \times \left(\frac{50 \text{ V} \times 1.6 \times 10^{-19} \text{ C}}{0.01 \text{ m} \times 9.11 \times 10^{-31} \text{ kg}}\right) \times (8.7 \times 10^{-10} \text{ s})^{2}$	(6)
	• $s = 3.3 \times 10^{-4} \text{ m}$ (1)		

Question Number	Acceptable Answer		Additional guidance	Mark
(c)	• use of $V = V_0 / \sqrt{2}$	(1)	Example of calculation:	
	vertical line	(1)	$V_0 = 53 \text{ V} \times \sqrt{2} = 75 \text{ V}$	
	positive and negative deflection shown	(1)		
	maximum deflection 75 V	(1)		
				(4)