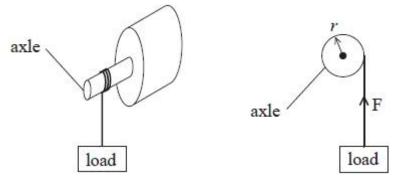
Practice Question Set For A-Level

Subject : Physics

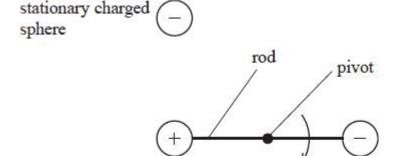

Paper-1 Topic : 7_ Electric Field 2

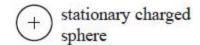
Student:		
Max. Marks : 20 Marks	Time : 20 Minutes	
Q1.		
Our understanding of the atom has developed over time, from early models in whose hard incompressible spheres, through to the nuclear model of the atom and the electrons exist in a discrete number of allowed energy states.		
The nuclear model of the atom was established following a series of experiments directed at thin gold foil.	in which alpha particles were	
(i) An alpha particle approaching a gold nucleus, $^{197}_{79}\mathrm{Au}$, head-on will be brough original path.	t to rest and returned along its	
Calculate the minimum distance between the alpha particle and the nucleus for 5.5 MeV.	or alpha particles of energy of	
	(4)	
Minimum distance =		
(ii) It is observed that electrons, with energy of 5.5 keV, are diffracted as they pa		
Explain a conclusion about the electrons that can be made from this observation		
Explain a conduction about the electrons that can be made from this observation	(3)	
(1	otal for question = 7 marks)	

Motors usually have a rotating component which can do work W.

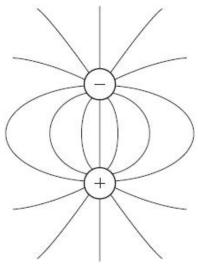
(a) A motor lifts a load in a time t. The axle of the motor has a radius r and exerts a force F.

The power produced by a motor can be calculated by using the following word equation.


Power = moment of the force exerted by the rotating axle x angular velocity


Derive this equation, starting with power $P = \frac{r}{t}$.	(4)

(b) An electrostatic motor was first demonstrated by Benjamin Franklin in 1750.


The diagram shows a simplified version of part of this motor.

This consists of a rod, with an oppositely charged sphere at either end, which rotates around a fixed pivot. Two stationary charged spheres apply a force on the spheres at either end of the rod.

- (i) In the diagram below, electric field lines have been drawn around one pair of these spheres. Add to the diagram to show
- the directions of the field lines
- the lines of equipotential.

e table shows the typical power and the corresponding angular velocity required for three onces.		
	Power / W	Angular velocity / rad s ⁻¹
Electric car	2.0×10^4	300
Vacuum cleaner	1.4×10^{3}	1000
Small pond pump	0.5	200
·	n (a) and assume that the le	electrostatic motor in (b). ength of the rod in the electrostatic force throughout one complete rota

(Total for question = 13 marks)