Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic :7_ Electric Field1



Student:	
Max. Marks: 13 Marks	Timo : 12 Minutos

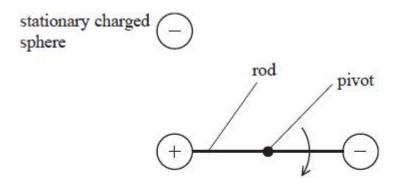
Q1.

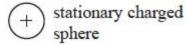
Motors usually have a rotating component which can do work *W*.

(a) A motor lifts a load in a time t. The axle of the motor has a radius r and exerts a force F.

The power produced by a motor can be calculated by using the following word equation.

Power = moment of the force exerted by the rotating axle x angular velocity

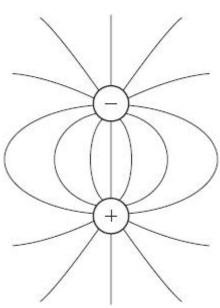

Derive this equation, starting with power $P = \frac{W}{t}$.	(4)


(b) An electrostatic motor was first demonstrated by Benjamin Franklin in 1750.

The diagram shows a simplified version of part of this motor.

This consists of a rod, with an oppositely charged sphere at either end, which rotates around a fixed pivot.

Two stationary charged spheres apply a force on the spheres at either end of the rod.



(3)

(2)

- (i) In the diagram below, electric field lines have been drawn around one pair of these spheres. Add to the diagram to show
- the directions of the field lines
- the lines of equipotential.

(ii) The di	stance between the cen	ntres of each char	ged sphere in this pa	air is 5.0 cm.
Show that	at the force between this	is pair of charged:	spheres is about 0.0	4 N.
charge o	on each sphere = 0.10 u	ıC		

(c) The table shows the typical power and the corresponding angular velocity required for three different appliances.

	Power / W	Angular velocity / rad s ⁻¹
Electric car	2.0 × 10 ⁴	300
Vacuum cleaner	1.4×10^{3}	1000
Small pond pump	0.5	200

Deduce which of these appliances, in principle, could use the electrostatic motor in (b). You should use the word equation in (a) and assume that the length of the rod in the electrostatic motor is 8.0 cm.

F	assume that the electrostatic moto	or would deliver a constant force throughout one complete rotation.	(4)

(Total for question = 13 marks)