Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 7_ Electric Field1

Name of the Student:

Max. Marks: 17 Marks

Time: 17 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answer		Additional Guidance Ma	rk
(i)	Bottom plate marked positive Or bottom terminal of power supply marked positive (1)		Accept top plate marked negative or top terminal of power supply marked negative	
(ii)	 Calculates volume of oil drop Use of ρ = m/v Use of E = v/d Use of F = mg and F = Eq Use of N = q/s N = 4.2 so student's expectation not supported by data Or N = 4.2 which is not a whole number Or N = 4.2 so taking experimental error into account student's expectation may be supported by data 	(1) (1) (1)	Example of calculation $V = \frac{4}{3}\pi \times (1.78 \times 10^{-6} \text{ m})^3 = 2.36 \times 10^{-17} \text{ m}^3$ $m = 2.36 \times 10^{-17} \text{m}^3 \times 920 \text{ kg m}^{-3} = 2.17 \times 10^{-14} \text{ kg}$ $E = \frac{4870 \text{ V}}{1.55 \times 10^{-2} \text{ m}} = 3.14 \times 10^5 \text{ V m}^{-1}$ $q = \frac{2.17 \times 10^{-14} \text{ kg} \times 9.81 \text{ N kg}^{-1}}{3.14 \times 10^5 \text{ N C}^{-1}} = 6.78 \times 10^{-19} \text{ C}$ $N = \frac{6.78 \times 10^{-19} \text{ C}}{1.60 \times 10^{-19} \text{ C}} = 4.23$	6

Question Number	Acceptable Answer	Additional Guidance N	Iark
	A pair of corresponding V an t values read from graph	nd (1) V/V 5	
	• Use of $V = V_0 e^{-\frac{t}{RC}}$ Or Use of time constant = RC	(1) 4 3 2	
	• C = 270 μF	(1)	
	 Use of ±20% with 220 μF [Largest C = 264 μF, smallest C = 176 (μF)] Comparison of 264 (μF) 	(1) $0 5 10 15 20 25 30 35 40 45$ t/s Allow use of tangent at $t = 0$ to determine intercept on x axis and obtain value for time constant; then calculate C	00000
	[176 (µF) if their calculated (gives MP1, MP2 and MP3 (1) MP3: Value should be correct and have units $ \frac{\text{Example of calculation}}{1.0 = 6.0e^{\frac{40 \text{ s}}{82 \times 10^3 \Omega \times C}}} $ $ \therefore \ln \left(\frac{1.0 \text{ V}}{6.0 \text{ V}}\right) = -\frac{40 \text{ s}}{82 \times 10^3 \Omega \times C} $ $ \therefore C = \frac{-40 \text{ s}}{-1.79 \times 82 \times 10^3 \Omega} = 2.72 \times 10^{-4} \text{ C} $	
		Largest value of capacitance = $1.2 \times 220 \mu\text{F} = 264 \mu\text{F}$	

Question Number	Acceptable answers		Additional guidance	Mark
	Time axis: one cycle = 50 OR two cycles =100	(1)	Example of calculation	
	• Use of time constant = RC	(1)	$T = 1/f = 1/20 \text{ Hz} = 0.050 \text{ s}$ $Two \ cycles = 2 \times 0.050 \text{ s} = 0.10 \text{ s} = 100 \text{ ms}$ $Time \ Constant = 100 \times 50 \times 10^{-6} = 0.005 \text{ s}$ $In \ half \ a \ cycle (0.025 \text{ s}) \ there \ are \ 0.025 \text{ s} / 0.005 \text{ s}$ $= 5 \ Time \ constants$	
	Charging curve, from 25 ms to 50 ms, just about reaching 5V as shown (ecf from their T)	(1)	Ignore anything drawn in the first half cycle	
	One corresponding discharge curve	(1)		5
	Curve should look exponential		Time period should be marked 50 ms or equivalent	