Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic :7_ Electric Field

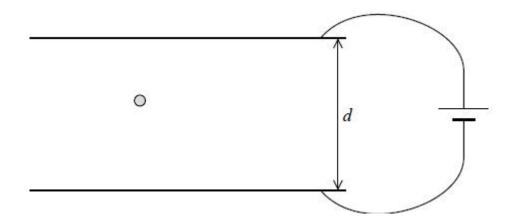
Student	
Max. Marks: 18 Marks	Time · 18 Minutes

Q1.

C1...............

Some mobile phones have a capacitor touch screen made up of a sheet of glass with a thin metallic coating. The screen is charged and when it is touched some of the charge is transferred to the user. This causes a drop in electrical potential at the point where the screen is touched.

A capacitor is charged by connecting it across a battery and then discharged through a resistor. In the case of the touch screen the user provides a discharge resistance of about 900 Ω .


Explain how the capacitor discharges.	
	(3)

(Total for question = 3 marks)

Q2.

In an experiment to determine the charge on an electron, negatively charged oil drops are allowed to fall between two parallel metal plates separated by a distance *d*.

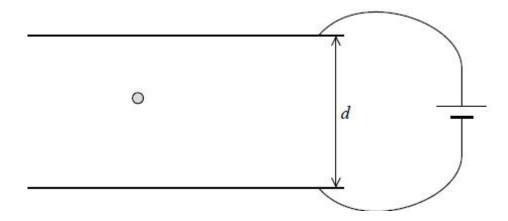
A potential difference (p.d.) is applied across the plates. The diagram shows one oil drop between the plates.

When the p.d. is 0 V the oil drop accelerates to terminal velocity. The p.d. is increased. It is observed that at a

particular p.d. V the oil drop stops falling and remains stationary between the plates. (a) The oil drop has a mass m . Show that the charge q on the oil drop is given by	
$q = \frac{mgd}{V}$	

(b) Explain what would happen to the oil drop if the p.d. is increased further.

(Total for question = 4 marks)


(2)

(2)

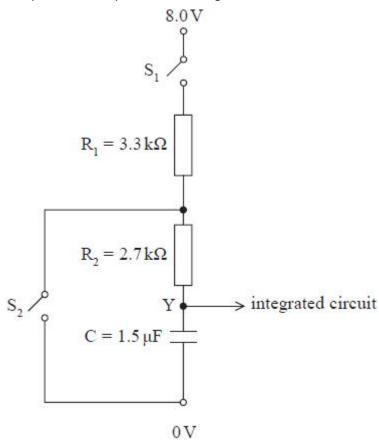
Q3.

In an experiment to determine the charge on an electron, negatively charged oil drops are allowed to fall between two parallel metal plates separated by a distance *d*.

A potential difference (p.d.) is applied across the plates. The diagram shows one oil drop between the plates.

When the p.d. is 0 V the oil drop accelerates to terminal velocity. The p.d. is increased. It is observed that at a particular p.d. V the oil drop stops falling and remains stationary between the plates.

Explain the motion of the oil drop in terms of the forces acting on it as the p.d. is increased from 0 to V .			
	(6		



(Total for question = 6 marks)

Q4.

The properties of capacitors make them useful in timing circuits.

The following circuit is used to provide an input Y to an integrated circuit.

When the potential at Y is 8.0 V, the switch S_2 is closed.

(i) Calculate the time taken for the potential at Y to decrease to 2.0 V.	
	(3)

	Time taken =	
ii) Calculate the energy stored on the capacitor when the	he potential at Y is 2.0 V.	
		(2
	Energy stored =	

(Total for question = 5 marks)